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CLASSIFICATION OF PAIN
many ways to classify pain

!

- Acute injury (Nociceptive pain) - Acute pain

- Inflammatory pain - Chronic pain
Subacute
Chronic
Tumor?

- Neurogenic pain
Neuralgic pain
Neuropathic pain
Primary headache syndromes
(migraine, cluster)
Tumor?



CLASSIFICATION OF PAIN
many ways to classify pain

l Inflammatory

Nociceptive evoked by proinflammatory m.
Somatic Ma_ny
Visceral acid

activation & sensitization of
nociceptive pain pathway

Neuropathic
disease or lesion in the somatosensory n.
- hyperalgesia or allodynia
-paresthesias (tingling)
(spinal cord injury, diabetic neuropathy,
postherpetic neuralgia, post-stroke pain
, phantom pain)



THE TARGETS OF ANALGESIC AGENTS
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THE TARGETS OF OPIOID ANALGESICS

O Periphery nerve terminals: low OR reserve, only drugs
with high intrinsic efficacy might have analgesic effect
than low efficacy opioids.

 Spinal cord dorsal horn outer laminae (Il és Il) — primary
site for it. administered opioids.

d Periaqueductal grey matter (PAG) in brain stem
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PAIN TRANSMISSION

- from the periphery by Ad and C fibers.

On the peripheral terminals partially indentified mechanisms taking up the

stimulus

TRPV1 (capsaicin sense): heat and low pH
TRPV2: heat

ASICS channels: low pH

TRPMS8 (menthol): cold

TRPA: chemical irritants (acids)

Transient receptor potential ankyrin 1 mustard oll
ENaC (Epithelial Na chanel): mechanical stim.

Mechanosensitive K channels (KCKN family: TREK and TRAAK
channels): mechanical stimulation

ATP P, receptor: mechanical (cell) injury, Located on Ad fibers



PRIMARY AFFERENT FIBRES

- Noxious sensory information carrier:
Ad and C fibers
- Non-noxious stimulus carrier: AP fibers

AB Ad C
Diameter Large Small 2-5um Smallest <2um
Myelination Highly Thinly Unmyelinated
Conduction velocity | > 40 ms-1 5-15ms-1 < 2ms-1
Receptor activation | Low High and low High
thresholds
Sensation on Light touch, | Rapid, sharp, Slow, diffuse,
stimulation non-noxious | localised pain dull Burning pain

Mechanical and thermal
stimuli

responsible for the initial
reflex response to acute pain

Polymodal

Polymodal: responding to multiple modalities, chemical,
mechanical (touch, pressure, stretch) and thermal stimuli




HEAT COLD
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OPIOID RECEPTOROK

G-protein-kapcsolt

u (MOR) K (KOR) 0 (DOR)

M (fajdalomérzé palya) l

o,es d,

|-12 (Iégz6kdzpont)
M3 (immunseitek)

Kiar Kqp K2 K3

preszinaptikus
| feszlitségfiigg6 Ca* 28rds| idegusgzodésekben
J, cAMP _ posztszinaptikus n.



Ascending pain pathways

Cortex

Thalamus

Midbrain
projection to
PAG

| Brainstem
Spinoreticular tract reticular
o . formation
Dorsal horn of |
spinal cord
Ad and = ' |
C fibres
‘ \ Spinothalamic tract

Cell body in
DRG
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TISSUE DAMAGE

¥
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MEDIATORS
Bradykinin
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PERIFERIAS OPIOID RECEPTOROK
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Local tissue acidosis & painful states

In peripheral tissues, acidic pH can directly excite nociceptive

neurons by activating:
- Acid-sensing ion (Na) channels (ASICs), are considered as

one of key ion channels to excite nociceptive neurons.

- Other channels regulated by acidic pH:
voltage-gated Na*, K* and Ca?* channels

transient receptor potential vanilloid 1 (TRPV1)
(Wemmie et al., 2006 and Holzer, 2009),

-Tetrodotoxin-resistant (TTX-R) Na* channels
expressed on small- and medium-sized sensory neurons

(DRG and trigeminal ganglia)
have role in inflammatory, NP and cold pain.
(Zimmermann et al., 2007, Eijkelkamp et al., 2012 and Waxman and Zamponi, 2014).

- TTX-R Na+ inhibited KOR agonists via an opioid receptor-
Independent mechanism.



MOLECULAR MECHANISMS

Damage of peripheral sensory fibers results In:
Texpression of the following:

(in myelinated neurons contribute to hyperalgesia)

- Ca,a26-1 channel subunit

- Na,1.3 sodium channel (1nM TTX)

- Bradykinin (BK) B1 and capsaicin TRPV1 receptors

Down regulation of the following:
- Na,1.8 Na channel (100uM TTX)
- B2 receptor, substance P (SP), MORs in unmyelinated ns.



PERIFERIAS OPIOID RECEPTOROK
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GATE CONTROL THEORY OF PAIN
MELZACK & WALL 1965

C fibres c
AP fibres :

Light touch, non-noxious

Brain

- inhibitory

non-painful input closes the "gates" to painful input



ANIMAL PAIN MODELS

PAIN INDUCERS

dJ THERMAL

To demonestrate the effect of opioids on

acute or chronic pain.

dJ CHEMICALS

For acute or chronic pain.

d DIRECT NEURONAL DAMAGES

For chronic pain.



ANIMAL PAIN MODELS

- Acute pain: Heat, chemicals -induced pain.
- Chronic pain: CFA, Streptozocin and nerve
injury induced pain.

FCA or CFA: Freund's complete adjuvant



Acute nociceptive tests
Thermal pain tests

- Radiant heat Tail Flick test (strong beam to the tail): spinal reflex.
- Is not useful for measuring
hyperalgesia

- Is used for testing opioids

- Tail Immersion test

Dipping the tail into warm water

- Classic hot plate test

The animal is put on a 55 °C warm

plate

It is a more complicated reflex

Tall flick and hot plate tests were the only tests used for screening analgesic agents
in the preclinical study until the late 1970.



Acute nociceptive tests

* Cold induced pain

— Rarely used for acute pain: the paw or tail of the animal is put in

cold solution or put on cold surface

« Mechanic induced pain

— Tall pinch test: the tail is put between a plate and a cogwheel
(fogaskerekii) like structure and it sets increasing force on it —

used sqgt. For testing K opioids

« Electronic impulse induced pain

— Short electronic impulse on the tail or dental pulp. Sometimes on

the surface of the cage. The starting of vocalization is measured.



Tests for measuring hyperalgesia and

+ Testmethods =

‘ h
* Thermal hyperalge
— Haargraves paw w

* The plantar surface of the hind paw is beamed by IR
laser. It measures the removing of the paw

* It can be used for testing NSAIDs and minor analgesics
» Contralateral paw can used as control



Test methods for hyperalgesia and
allodynia
— Incremental hot plate test:

» Temperature of the plate is starting
from room temperature and
increases

» Latency and threshold temperature
is also measurable

* No contralateral control

|t can be used also as cold plate for
cold allodynia

— Incremental water bath

* The fast increase of the bath is
difficult to perform

« The paw sensitivity is tested and
contralateral can used as control

— Cold allodynia test:

« The paw is dipped into ice water
and withdrawal latency is measured




TESTS FOR MEASURING
HYPERALGESIA AND ALLODYNIA

Mechanical hyperalgesia

— Randall-Selitto (paw-pressure) test

« Well trained investigator is
important

« Contralateral paw can used as
control




TESTS FOR MEASURING
HYPERALGESIA AND ALLODYNIA

Von Frey test — touch sensitivity test
For both hyperalgesia and allodynia
The paw of the free moving rat/mice is stimulated by a filament.

1- Classic
2- Electronic
3- Automatic: Dynamic Plantar Aesthesiometer (DPA)

— Sham or contralateral paws are used as control




INFLAMMATORY PAIN MODELS

« Carrageenan induced hyperalgesia
— Subacute inflammation (mechanical hyperalgesia, 3 h), (thermal <3h)
— For hyperalgesia.
« Capsaicin induced hyperalgesia
— Capsaicin activates directly TRPV1 receptors on sensory neurons
— In high dose it can cause desensitization
* Formalin test
— Intraplantar formalin causes reaction in two phase
« Phase I. (after ca. 3 min): acute chemical pain
« Phase Il. (after ca. 15 min) : real acute inflammatory reaction
— It cause spontaneous pain reaction: vocalization and paw licking

— NSAIDs are active only in phase II.



INFLAMMATORY PAIN MODELS
« Complete Freund Adjuvant (CFA)

— M. tuberculosis extract in lipid-water emulsion
— Evokes arthritis like hyperalgesia (in 3- 14 days)

— After long period (ca. 3 weeks) in some animals it
causes polyarthritis ( is model for RA)

» Acetic-acid writhing test

— Intraperitoneal injected 0,6% acetic-acid causes
spontaneus pain reaction (writhing).

— Model for visceral inflammatory pain



Animal models of neuropathic pain

- Peripheral nerve injury models

« Sciatic nerve injury models

Diabetic neuropathic model

— Diabetes is induced by streptozotocin

» High dose: direct cell toxic, low
dose induce immunoreactions

— Neuropathic symptoms
appear in 3 weeks Peripheral

Drug induced neuropathy Common peroneal |1~ sura
— PI. Cisplatin, Taxanok

] SNL model ,;/' -

Spared nerve injury
Partial sciatic nerve ligation (PSL/Seltzer model), Pain (1990) 43 205-218.

Chronic constriction injury (CCl), Bennett and Xie Pain (1988) 33 87-107.
Spinal nerve ligation (SNL), Kim and Chung, Pain (1992) 50 355-363.



Animal models of neuropathic
pain

Dorsal root ganglion
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Animal models of neuropathic
pain

Tight ligation
——— of half sciatic
nerve

6\
Transection of tibial and
sural nerve



Table I List of dillerent animal models of neuropathic pain.

S.no. Name of model Principle of injury Species
1 Axotomy (complete sciatic nerve transection)  Complete transection of scatic nerve Rats
2 Chronic constriction injury Four loose ligatures around sciatic nerve Rats, mice
3 Partial sciatic nerve ligation (Seltzer Model) Tight ligation of one-third to half of sciatic nerve Rats, mice
4 Spinal nerve ligation (i) Tight ligation of L5, L6 spinal nerves Rats,
(ii) tight ligation of L7 spinal nerve Macaca
fascicularis
5 Spared nerve injury Axotomy of tibial and common peroneal nerves Rats, mice
6 Tibial and sural nerve transection Axotomy of tibial and sural nerves Rats
7 Ligation of common peroneal nerve Ligation of common peroneal nerve Mice
8 Sciatic cryoneurolysis Freezing of the sciatic nerve Rats
9 Caudal trunk resection Resection of caudal trunk Rats, mice
10 Sciatic inflammatory neuritis Injection of zymosan, HMG, TNF-alpha around Rats, mice

sciatic nerve

Amteshwar et al., 2011



11

12

13
14
15
16

Cuffing-induced sciatic nerve injury

Photochemical-induced sciatic nerve injury

Laser-induced sciatic nerve injury

Weight drop or contusive spinal cord injury
Excitotoxic spinal cord injury
Photochemical spinal cord injury

Spinal hemisection
Drugs-induced
Anti-cancer agents (vincristine, cisplatin,
oxaliplatin, paclitaxel)
Anti-HIV agents (2,3-dideoxycytidine,
didanosine)
Diabetes-induced neuropathy
Streptozotocin-induced
Genetic models

Implantation of polyethylene cuff around sciatic
nerve
Thrombosis in small vessels supplying sciatic nerve by
photosensitizing dye and laser
Radiation mediated reduction in blood supply to sciatic nerve
Dropping a weight over the exposed spinal cord
Intraspinal injections of excitatory amino acids
Thrombosis in blood vessels supplying the spinal cord
by photosensitizing dye and laser
Laminectomy of T11-T12 segments.

Direct injury of drugs to the nerves of peripheral

nervous system

Persistent hyperglycemia-induced changes in
the nerves

Rats, mice
Rats, mice
Rats

Rats, mice
Rats, mice
Rats

Rats

Rats, mice,
guinea pigs

Rabbits, rats

Rats, mice

Amteshwar et al., 2011



24

25

26

27

Bone cancer pain models
Femur, calcaneus,tibial, humerus bone
cancer pain
Neuropathic cancer pain
Skin cancer pain

HIV-induced neuropathy
Post-herpetic neuralgia
Varicella Zoster virus
Herpes simplex virus
Non-viral model
Chronic ethanol consumption/withdrawal
Pyridoxine-induced
Trigeminal Neuralgia

Orofacial pain

Acrylamide-induced

Inoculation of cancerous cells into respective bones

Growing a tumor in vicinity of sciatic nerve

Injection of melanoma cells in plantar region
of hind paw

Delivery of HIV-1 protein gp120 to sciatic nerve

Injection of viral infected cells in the footpad
Depletion of capsaicin-sensitive

Afferents with resiniferotoxin

Administration of ethanol over extended period
(around 70 days)

Administration of high dose pyridoxine for long
period

Compression of trigeminal ganglion

chronic constriction injury to infra-orbital nerve

Injection of formalin, carragenan into
temporomandibular joints and maxilla

Administration of acrylamide for prolonged period

Rats, mice

Mice
Mice

Rats

Rats, mice

Rats
Rats

Dogs, rats
Rats
Rats

Rats, mice

Rats

Amteshwar et al., 2011



PAIN TYPES

Types Source Innervation Character.
Visceral internal organs C fibres diffuse and poorly
localised,
(deep, dull or
dragging)
Neuropathic damaged nerves (in burning or ‘like an
central or peripheral electric shock
NS).
Cause:

diabetes mellitus
trauma or surgery
chemotherapy
radiotherapy
iIschaemia,
infection
malignancy.

Allodynia: Pain may be experienced in response to a stimulus that does

not usually cause pain.

Hyperalgesia: pain may be a heightened response to a stimulus that is usually
painful.
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Confocal microscopy shows that MOR-ir is contained
In control and inflamed rat paw nerve fibers.

MOR-IR nerve fibres/ 38.4 mm?
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4 days after complete freund adjuvant
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PERIFERIAS OPIOID ANALGEZIA

1 The pain relief by perineural morphine
Injected close to the site of pain generation have
been reported by Wood in 1850.

dOpioid receptors have been reported to be
present in the periphery where they might
mediate the analgesic action of opioids (Stein et
al., 1995).



LOOKING FOR NEW OPIOID ANALGESIC
AGENTS WITH LIMITED ACCESS TO CNS

!

DECREAS IN THE CNS SIDE EFFECTS OF OPIOIDS

HITTING THE PAIN AT ITS SOURCE
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Conclusion: New opioids have limited access to the
CNS and
can mediate antinociception at peripheral sites
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Research report

DAMGO and 63-glycine substituted 14-O-methyloxymorphone but not
morphine show peripheral, preemptive antinociception after systemic
administration in a mouse visceral pain model and high intrinsic
efficacy in the isolated rat vas deferens
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Conclusion: New opioids have limited access to the
CNS and
can mediate antinociception at peripheral sites
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Research report

The central versus peripheral antinociceptive effects of p-opioid receptor
agonists in the new model of rat visceral pain
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Conclusion:

In the rat late permanent visceral pain model

- systemic morphine has prominent central
antinociceptive effects.

- systemic DAMGO shows peripheral effect.

- this model closely resembles the clinical situation.



Confocal microscopy shows that MOR-ir is contained
In control and inflamed rat paw nerve fibers.

MOR-IR nerve fibres/ 38.4 mm?
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Peripheral antinociceptive efficacy and potency of a novel opioid \'!)cm_w,\,rmk
compound 14-O-MeMG6SU in comparison to known peptide and

non-peptide opioid agonists in a rat model of inflammatory pain

Baled. I. Khalefa® Shaaban A. Mousa®, Mohammed Shaqura®, Erzsébet Lacké?,

Sandor Hosztafi ¢, Pal Riba?, Michael Schifer®, Péter Ferdinandy?, Susanna Fiirst?,
Mahmoud Al-Khrasani**
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Conclusion: The observed superiority of local antinociceptive
effects of 14-O-MeM6SU in comparison to non-peptide

and peptide opioid agonists might be due to both
pharmacodynamic (the efficacy, the receptor reserve and the
selectivity) and pharmacokinetic parameters.
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Efficacy of Spinal Mu-Opioid Receptors in Diabetic Rats Are
Reversed by Nerve Growth Factor
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For the first time we show a loss in MOR-IR neurons, membrane-spanning receptors,
and functional G protein coupling during advanced STZ-induced diabetes as a
contributing factor for the impaired antinociception of i.t.-delivered MOR opioid agonists.

Pretreatment with i.t. NGF reversed these alterations and rescued opioid
responsiveness.



o

MORICQ_;RP MOR/CGRP
a%

av

A
. o€

non-diabetic diabetic non-diabetic diabetic

non-diabetic diabetic
MOR
(55 kDa) > | WEEE .

capor - [

(37 kDa)
140 @l non-diabetic F 1407 @llnon- diabetic H 140 7 [lnon-diabetic
- Wl diabetic 2 Elldiabetic 2 Bl diabetic
c 1201 * 2 1201 . 2 1207 N
P —— & &
2 B 1007 == 100] 2> 51007
€ £ S 5 S &
25 801 g5 80 = 5 807
= .."_’ o O o ©
@ G 60] oY 607 w5 607
Q&\e' 401 g°\° 4071 g°\° 401
o — —
¢ 14 1 = 201
= 2 o 20 o
= 0° = 0

o
Y

The p-opioid receptors (MOR) density in diabetic and non-diabetic rats
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Titration of systemic doses of opioid compounds with limited access to the brain might
offer peripheral analgesia of clinical importance. These data indicate that the
development of opioid drugs like M6SU and its analogues, which hit the pain in the
periphery with a wide safety index, may represent a new opioid generation for the
treatment of inflammatory pain.



