
The analytical phase

The CASE

Uncle Pete, 67 years old

- Marked abdominal pain
- 8 pm, ED
- Acute abdomen?

Assessment (+ physical exam)

- Sampling for the lab FOR THAT: sending a request
- Radiological tests (US, X-ray)

Requesting a test

- Requesting: via medical informatic system (at the university)
- Sheet for tests (e.g. emergency tests, routine, hemostasis, hormone etc.)
- The software tells the number and type of tubes to be used

Lab tests for Uncle Pete

- Blood sampling
- CBC
- PTT, aPTT, TT (hemostasis)
- Chemistry (amilase, ALP, bilirubin, GOT, LDH, GPT)
- troponin
- Urinary specimen
- Amilase

Sampling was successful

You remember (don't you?): Patient's identification

- 1. Should be labelled in Uncle Pete's presence
- 2. (For unconscious patients: RFID, arm band)
- 3. Sampling just one patient in a given time-point
- 4. ID data: name, birth data, ID number
- 5. Appropriate position of label

Sample – arrived to the lab

 Registration of sample [it is arrived]

2. Processing [centrifuge] Note: serum vs. plasma

3. Distribution (generation of worklists)

SAMPLE – distribution

SAMPLE – testing

Organization of work within the lab

- 1. Administrator: encounters samples (registration)
- 2. Assistants: operation, maintenance of machines
- Graduated: supervision of workflow, validation of results (comparison with clinical data, preceding results, other test results) (generation of lab findings)

TAT-idő (turn-around-time) = time between arrival of sample to the lab and generation of finding

Emergency: < 1 hour Routine: <24 [in general 4] hours Special tests: 1 – 2 weeks, max. 1 month

SAMPLE – testing that the doctor should know

Tests are done on different analyzers with different reagents.

Characteristics of reagents

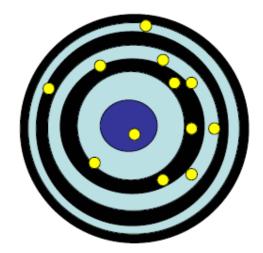
- 1. What is it good for (what analyte on what machine)
- 2. Measurement range (lower and upper level of detection, LOD)
- 3. Expiry date (particularly tests applying enzymes and proteins)
- 4. Number of tests included (collection of specimens...)
- 5. Lot number
- 6. Cross-reaction, interference (eg. HAMA, coloric substance etc.)

SAMPLE – testing

Tests are done on different analyzers with different reagents.

Characteristics of analyzers

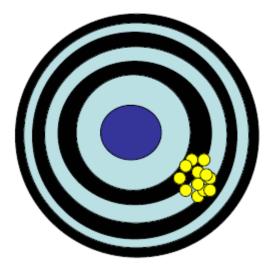
- 1. What is it used for
- 2. Test number done per hour
- 3. Time required to complete a test
- 4. Sample requirement
- 5. Requirement for reagent and consumables


SAMPLE – testing

Tests are done on different analyzers with different reagents.

<u>Analyzers + reagent = together a system</u> (IVD qualified systems)

- Imprecision [Repeatability and Reproducibility](CV%) difference between results repeatedly measured within and between run
- 2. Trueness approximation of real (target value)
- 3. Accuracy depends on the first 2 factors


Cause of imprecision = random error Instrument condition Temperature Pipetting Carry-over Personal factors

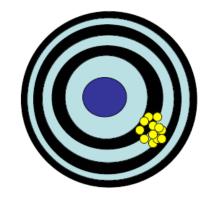
Random error is high

–Rrepeatability: standard deviations of repeated test results done under the same conditions (within-run or intra-run assays)

 – Reproducibility): standard deviations of repeated test results done under different conditions (between-run or inter-run assays) Systemic error (bias) Basic setting of the device Calibration errors

An example for biased (but accurate) results: uncle Pete's case [continued]

The doctor requested glucose levels and electorlytes the next day morning.


Serum glucose: 1.8 mmol/L Lactate: 6.9 mmol/L LDH: 1500 U/L

????

Lab is documentedly proficient in these tests: 5 different labs measured the same

- Na⁺ 143 145 145 141 143 mmol/L
- K⁺ 7,4 7,6 7,7 7,5 7,5 mmol/L
- Glukóz 1,8 2,0 2,0 1,7 1,8 mmol/L
- Laktát 6,9 7,3 6,8 7,1 7,0 mmol/L
- Amiláz 100 97 95 108 90 U/L
- · LDH 1500 1650 1700 1490 1600 U/L

Reproducibility is about 5 per cent

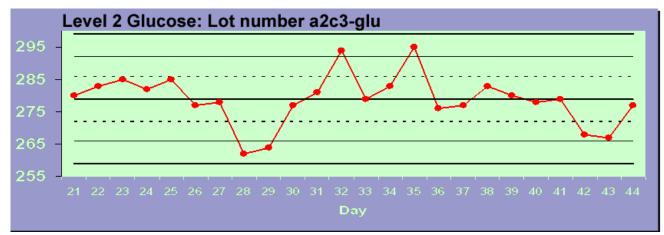
Possible explanation:

- Unprocessed sample was present for 8-10 hours in tube; glucose utilization was continuous while lactate increased
- Cell membrane damage; micro-hemolysis leading to an increase in potassium and LDH
- Estimated decrease:
 - Glucose (half / one third)
- Estimated increase:
 - Potassium by 100%
 - LDH by 2-300%
- Conclusion:
 - While lab provided precise results [imprecision was low], they were biased and trueness was low; accuracy was also low

How can I monitor the functioning of the system?

Answer: quality control

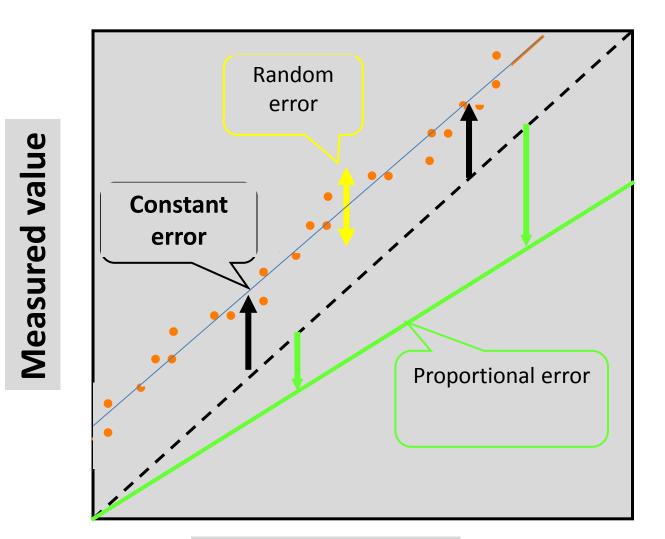
(not cheap: may be up to 10-30% of costs – depending on lab load)


Quality control / QC

Internal QC: daily / regular measurement of control samples of known composition and concentration. [Control charts]

External QC: independent organization provides samples of unknown analyte levels 4 -6 times per year; central evaluation is based on difference from target values

Levey-Jenning charts: presentation of internal control values by time



NOTE:

There is NO diagnostic test without control measurements (including POCT assays)

Systemic and random errors can be detected

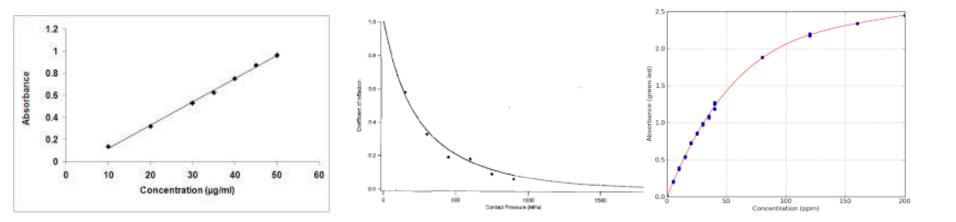
Reference value

Westgard rules

- Principles that are used to decide based on control results whether daily measurements can be done
- E.g. deviation from target values based on 2SD limits; presence of systemic error
- Appropriate interventions (e.g. change of reagent, new calibration etc.)

Examples for Westgard rules

What should / can be done in case of significant error

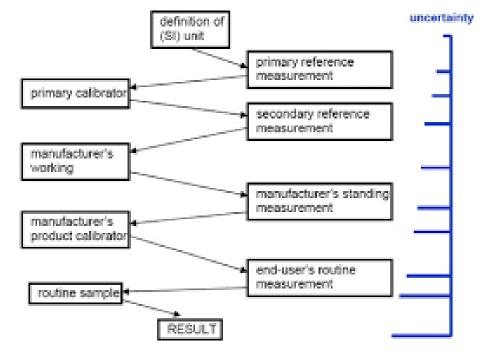

- Should not measure
- System's status should be tested (e.g. reagents, consumables, clarity, electrode, cuvette etc.)
- In case of necessity: calibration

Calibration:

• One should teach the device what results should be associated to a given measured signal

Calibration

- Use of reference materials
- Number of plots (calibration curves)


Reference materials: a particular science

The reference basis is of outmost importance – if it is inappropriate, the functioning of the whole system is unreliable.

Reference materials should be traceable

Qualified reference materials

Qualifications of different level

External QC programs

- Independent organization
- Distributes samples regularly to labs
- Based on results' relationship to targeted values (within 2SD): indication whether lab's work is acceptable
- Theoretically: if a lab fails, it should not perform the implicated test

25. Koleszterin

In Vitro Diagnosztikai Mindségetlendecési Kht. 6720 Szeged, Somogyru, 6.: 6701 Szeged, Pf.: 910 Tel./#ex. 62/643-015, Tel.: 62/543-016 E-mell: mell@qualicont.com Web: www.qualicont.com

ommaM0.

....

10

Cont Web: www.qualicont.com								Egyedi kiértékelés					
	C ked: D41	10 Aug		SE ÁOK I. Gy									
QC kód: 041 Kör: 2007.IV. Kiküldés dátuma: 07. aug. (100. Program: Klinikai kémia									06. Beérkezés dátuma: 07. aug. 2				
- 11	u. Program: Kin	nikar ke	ritia .			E real-	Cél-		affected.	_			
				Vodszer, Resgens	Minta	and my	derfichte.	and a		Endres			
	. Kalukan		04imol/0	a PiO	G H	2.2 5.2	2,22 3.21	1.97 2,85	- 2,47 - 3,67	1	* 		
02	. Kiorid		(minisM)	7 RO	а Н	84 132	87.9 116	79.9 105	- 96.9 - 127	-4 -3	0 0		
03	Katum		(mmetr)	4 RO	â	3,4 8,3	3,43 6,32	3.42 6.75	- 3.74 - 6.89	-1			
P4	Natrium		immoidi	4 NO	G H	125 149	124 140	110 120	- 132 188	3			
os.	Vas		(#200821)	5 RD	a H	20 31	20.4 30.4	17.5 26.1	: 23.3 : 34.7	-2 -			
06.	тук		(umol/0	99 PiQ	9	47 49	40,2 40,3	37.3 36,3	: 81.1 : 87.7	-4			
10.	Magnézium		(mmol/0	n P0(3	g	1.7	0.99 1.03	0.83	; 1,55 ; 1,9	1 ==	4.	h	
11.	Anorganikus fosatét		primat/tp	0 RCD	а Н	1.2 2	1.15	0.95	- 1,37 - 2,33	3	0		
12.	Osszfehdirjá		1920	2 RO	8	84 49	62,5 47,9	66.6 42.6	- 09.4 - 53.2	2			
13.	Allownin		1040	1 PIO	9	45 90	41 29.1	31 22,4	- 81 - 35.6	10			
10.	Ditrutin (desizes)		(pmakt)	3 RO	G H	20 75	20.5 77.1	13.7 56.9	: 87.3 97.3	:3	8		
17.	Bilkubin (deskt)		(umoV0	8 RO	볋	1.27 310	12,3 30,3	7.87	: 16.73 : 53.5	:2 -1	0 0	1	
	Glikor		(Vommo)	3 196	9	5.1 13.6	10,71 10,7		5.94 15.9	-9	.0 0		
1 18.	Hugynav		0.60mmed0	9 DG	G H	240 632	246 666	211 573	: 281 - 759	:2	e.a.		
HQ.	Kadsamid		(mmat/l)	0.00	믭	8.8 25.8	6,49 26.8		- 7.92 - 01.2	o	-		
in,	Kreatinin		(umal/l)	5.80	â	100 245	87.2 353		- 119.3 - 431	3		111-	
te.	Triglicenden		(mmakl)	7 86	GH	1:4	1,35 2,29	1,1 1,07	2.8	å <u></u>	10. 10		

CL H 2,2

DO

2.26 5.05

1.04 - 2.08 4.33 - 5.77

Just some thoughts

• Research vs. Diagnostics:

these activities should not be mixed

- Difference:
 - QC
 - Quality assurance
 - Organization of workflow
 - Possible conclusions
 - Clinical value
 - Reimbursement
- Similarity:
 - Technique
 - Staff

If the system works...

- and the control is OK...
- Work sheets are generated (information system)
- Work sheet: samples (patients) + requests
 - Batch mode: one kind of testing from all the samples
 - Single sample measurement: all the requested tests from one sample are initiated; then it forwards
 - STAT mode: emergency requests are done at first

And finally the test is performed and a result is generated

- Technician inspects, then allows its passing to the laboratory information system
- Graduated staff (doctor, biochemist) checks and relates to other results (delta check: comparison to prior result). If OK, validates
- Validated result = FINDING
 JUST VALIDATED RESULTS CAN BE USED FOR
 CLINICAL DECISION MAKING.

Some facts about validation

Diagnostic values requiring clinical decision: depends on ANALYTICAL and BIOLOGICAL variability

$$u = 1.96*\sqrt{(CV_A^2 + CV_I^2)}$$

Autovalidation: an informatical tool to support lab staff that decides automatically whether the result can be passed without intervention into the medical informatical system (may involve about 50-80% of findings)

Support the critical overview of remaining results.

What a lab doctor looks at on a list of results

- Extreme deviation from the normal
- Extreme difference from the prior result (delta check)
- Linkage to other parameters
- Association with clinical parameters
- Trends in analyte levels (may skew during the day)

Some examples for linked parameters

LDH + haptoglobin Troponin T + CK GOT, GPT, GGT High bilirubin and GOT, GPT Albumin + ionized calcium Osmolality + Na, glucose and BUN BUN + creatinine α -amilase (lipase) + bilirubin albumin \leq Total protein * 0.7 Conjugated Bilirubin < Total Bilirubin Total Cholesterol > HDL + LDL

Uncle Pete's findings

Lab findings asked as emergency Available after 43 min of TAT

- ALP: 1100 U/L
- Bilirubin: 80 micromol/L
- Direct bilirubin: 54 micromol/L
- LDH: 340 U/L
- Not increased: amilase, troponin, GOT, GPT
- WBC: 10.4 G/L
- Urine: Ubg negative, bilirubin positive

Next time you can learn how to use these results

Just to remember from this lecture

- Analytical phase: it is the competency of laboratory
- Complex processes (factory)
- Quality control and assurance are of outmost importance
- Clinical decision making can be done solely on the basis of validated result (finding)