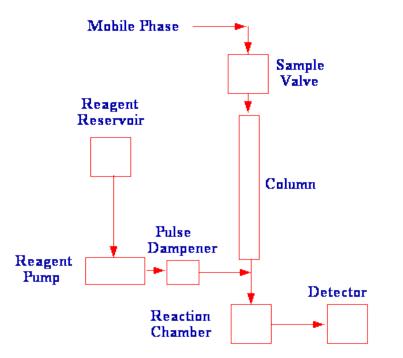
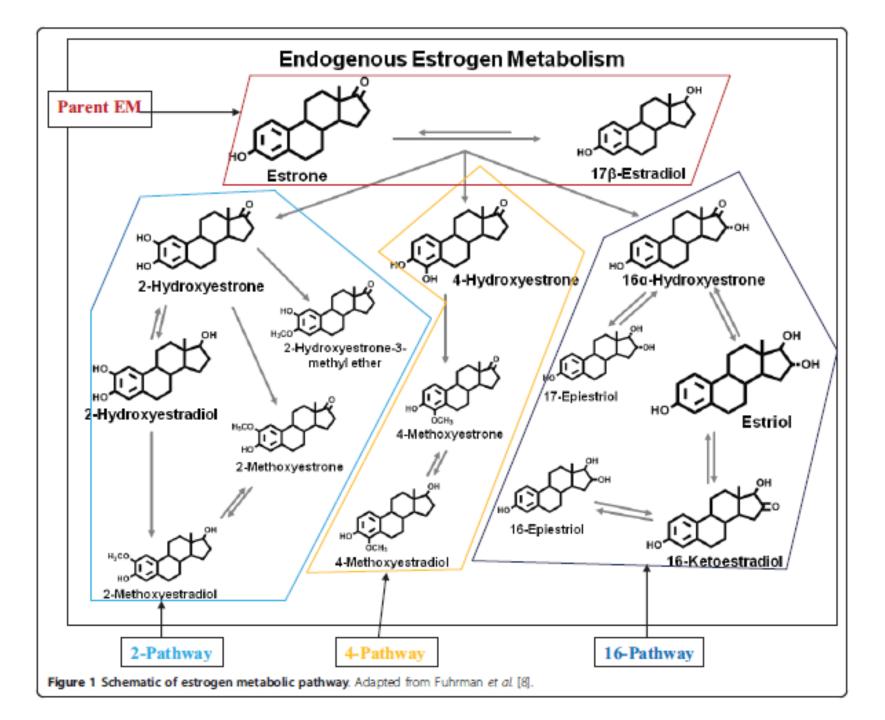
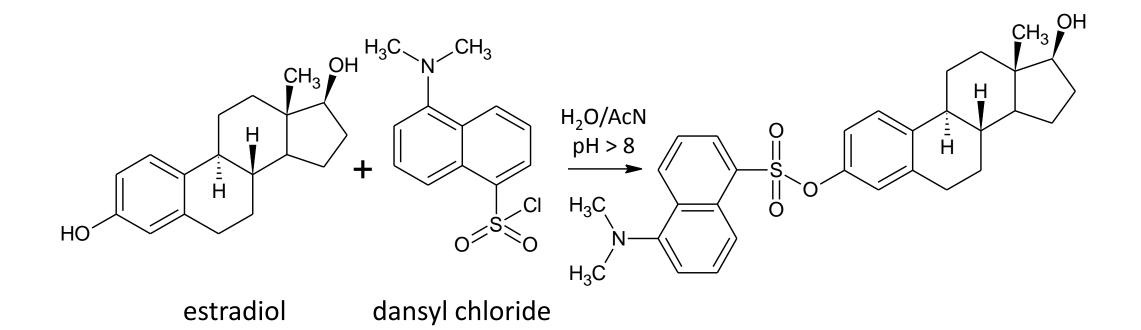
Chemical derivatization

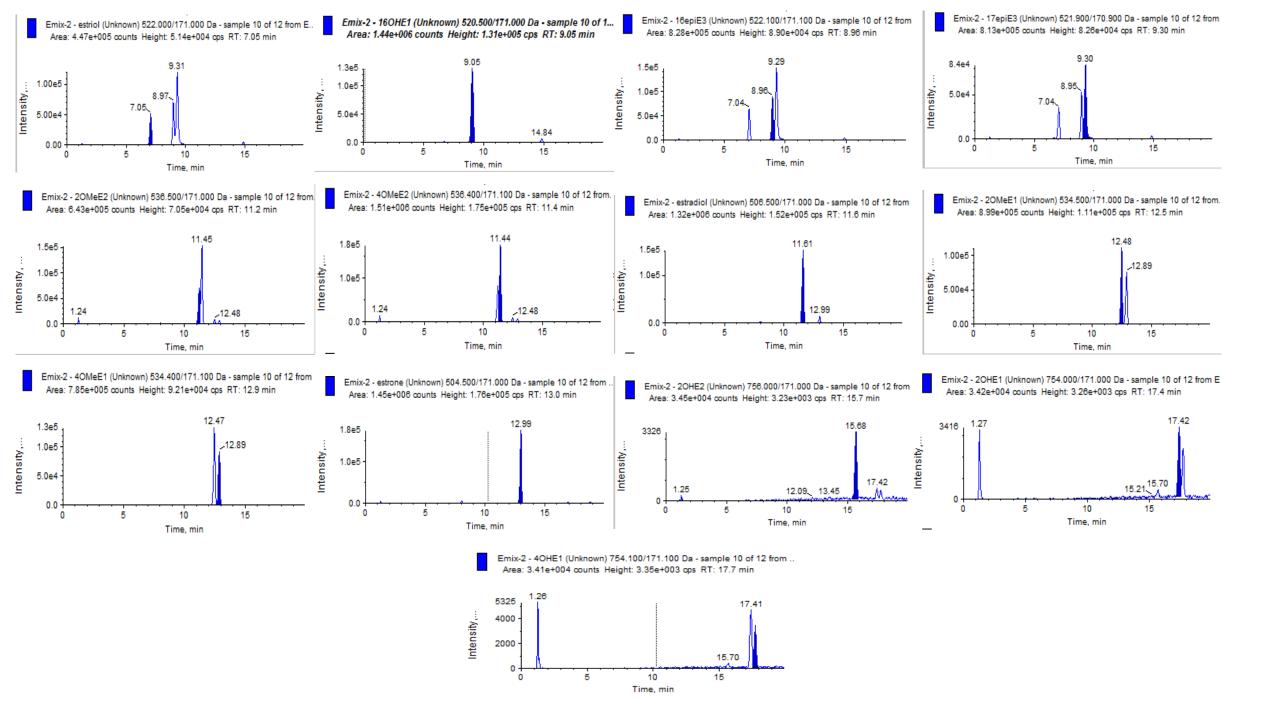
Derivatization in liquid chromatography and mass spectrometry

• Aims:

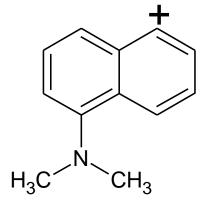

- increase analyte stability
- increase solubility
- improve chromatographic properties
- increase detection sensitivity
- increase selectivity
- reduce matrix effect
- allow chiral separation in achiral systems

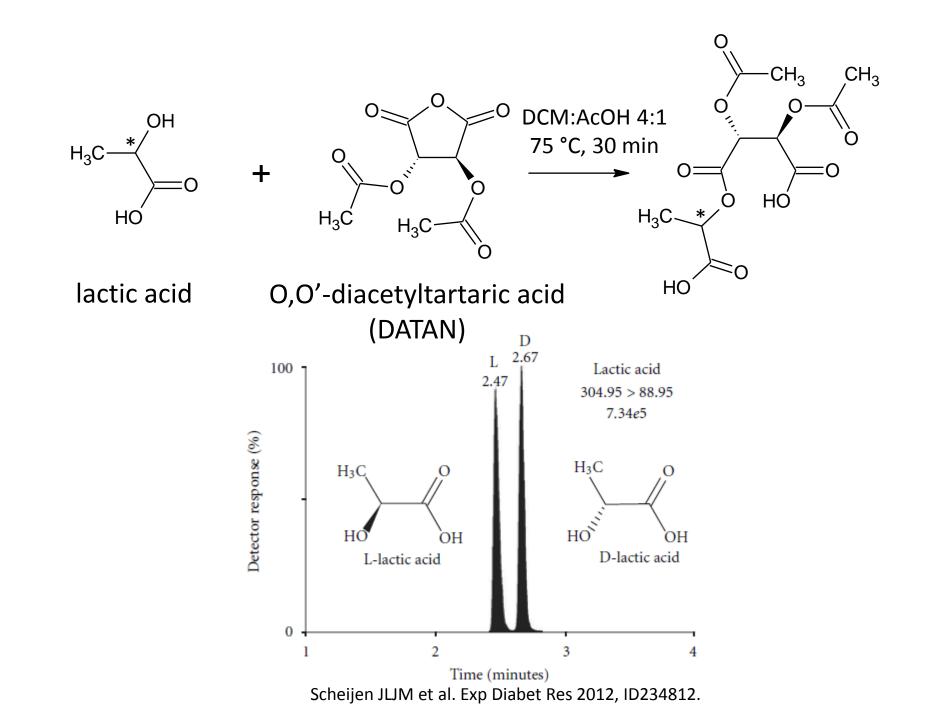

What we expect from the derivatization reaction:


- completion in a reasonable time frame (preferably: fast)
- should not require highly special technologies
- should yield a single product of each analyte
- should be reproducible if not quantitative
- robustness with respect to the matrix composition
- should be non-toxic
- feasible in aqueous medium

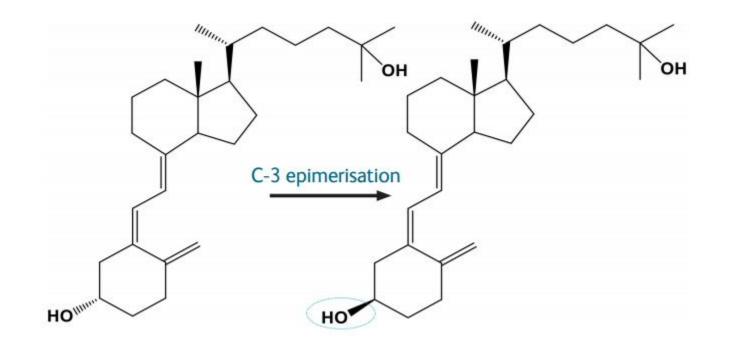

Derivatization in liquid chromatography and mass spectrometry

- pre-column derivatization: part of the preanalytical workup
- post-column derivatization: part of the analytical assay





Method in plasma:


- sample preparation:
 - 500 μL plasma + 10 μL internal standard solution + 500 μL water
 - add 2 mL EtOAc, vortex 2 min, centrifuge, repeat process, combine organic phases
 - evaporate to dryness
 - add 100 μ L 1 mg/mL dansyl chloride in AcN + 25 μ L 0.1 M NH₄CO₃, keep at 45 °C / 15 min
 - add 20 μL 0.5 M HCl, vortex
 - add 50 μL AcN + 105 μL water
- analysis: LC-ESI(+)-MS/MS, run time: 17 min
 - SP: C18 50x2.1 mm, 1.7 μm + biphenyl 50x2.1 mm, 1.7 μm
 - MP: water (A), acetonitrile (B), both containing 0.1% formic acid
 - sample volume: 10 µL, 15 °C
 - FR: 0.2 mL/min
 - CTO: 35 °C
 - MS mode: MRM

Method in plasma:

- sample preparation:
 - 25 μ L plasma + 25 μ L internal standard solution
 - add 600 µL methanol:acetonitrile 1:1, vortex, centrifuge
 - evaporate to dryness
 - add 50 μL 50 mg/mL DATAN in DCM: AcOH 4:1, keep at 75 °C / 30 min
 - evaporate to dryness
 - reconstitute in 150 μL water:AcN 2:1.
- analysis: LC-ESI(-)-MS/MS, run time: 6 min
 - SP: C18 100x2.1 mm, 1.7 μm
 - MP: water/0.0015 M NH₄OOC, pH=3.6 (A), acetonitrile (B)
 - gradient: 0.5% B, 3 min 3% B, 3.01 min 40% B, 5 min 0.5% B
 - sample volume: 2 µL, 6 °C
 - FR: 0.5 mL/min
 - CTO: 31 °C
 - MS mode: MRM

25-hydroxyvitamin D3

3-epi-25-hydroxyvitamin D3

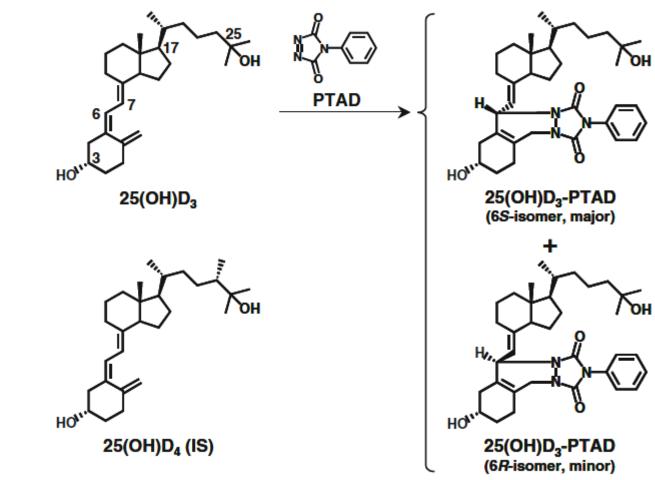
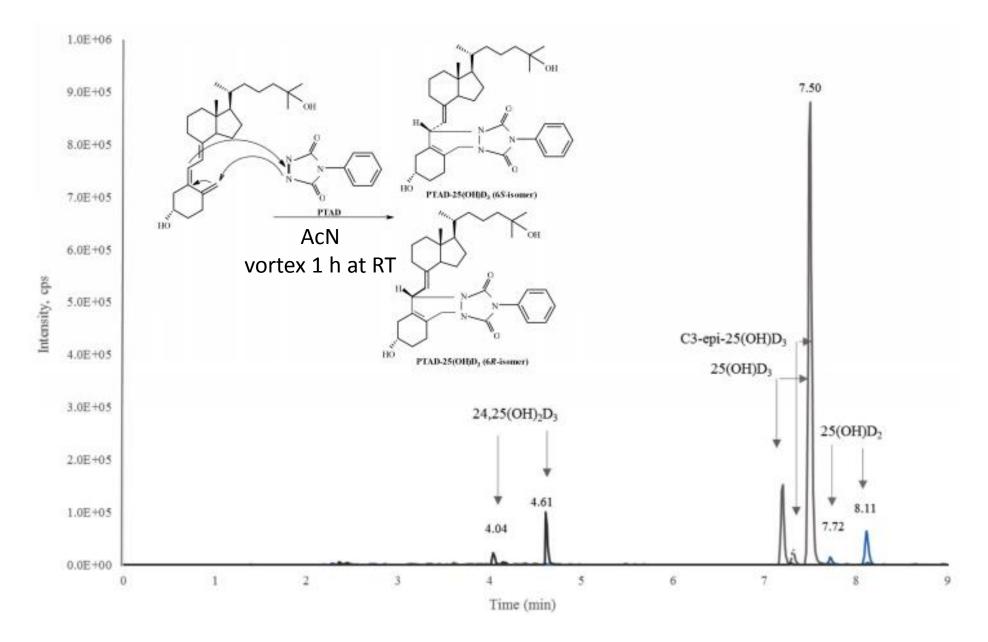
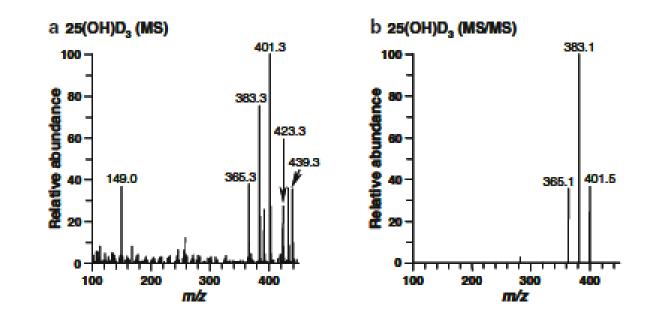



Fig. 1 Derivatization of $25(OH)D_3$ with PTAD and the chemical structure of $25(OH)D_4$ (IS)


PTAD: 4-phenyl-1,2,4-triazoline-3,5-dione

Higashi T et al. Anal Bioanal Chem 2008;391:229.

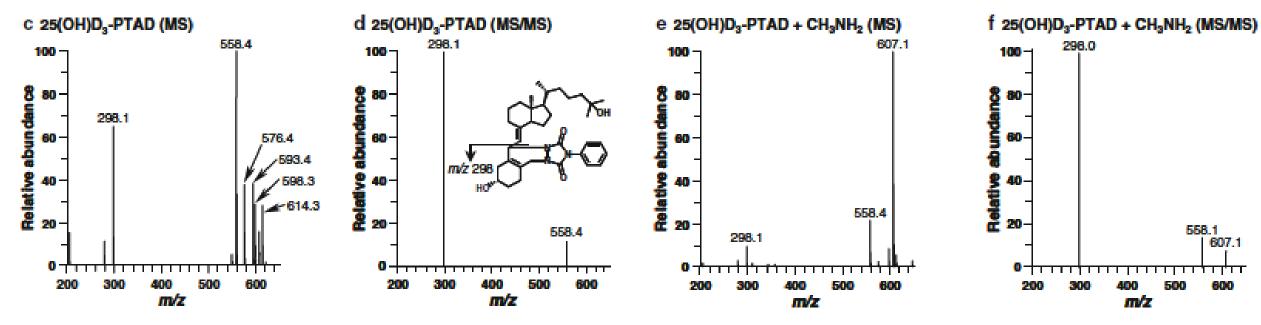

PTAD: 4-phenyl-1,2,4-triazoline-3,5-dione

Fig. 2 a-f ESI-MS and ESI-MS/MS spectra of (a and b) intact 25(OH)D₃ and (e-f) 25 (OH)D3-PTAD. Methylamine (5 mM) was added to the mobile phase when the e and f spectra were measured. The LC-MS and LC-MS/MS conditions are described in the "Experimental" section

607.1

600

Higashi T et al. Anal Bioanal Chem 2008;391:229.

Method in saliva:

- sample preparation:
 - 1.0 mL saliva + 20 pg internal standard solution
 - add 2.0 mL acetonitrile vortex, centrifuge
 - add 3.0 mL water to supernatant, apply to Strata-X → wash: 2 mL water, 2 mL water:MeOH 3:7. Elute: 1 mL EtOAc.
 - add 25 μL 0.1 mg/mL PTAD in EtOAc, keep at RT / 30 min, add 25 μL PTAD/EtOAc, keep at RT / 30 min.
 - add 40 µL EtOH, evaporate to dryness
 - reconstitute in 30 µL MP.
- analysis: LC-ESI(+)-MS/MS, run time: 6.5 min
 - SP: C18 150x2 mm, 5 μm
 - MP: methanol/0.01 M NH₄OOC (A)
 - sample volume: 10 μ L
 - FR: 0.2 mL/min
 - CTO: 40 °C
 - MS mode: MRM

Drug Discoveries	æ	Therapeutics.	2013;	7(1):9-17	7.
------------------	---	---------------	-------	----	---	--------	----

Review

DOI: 10.5582/ddt.2013.v7.1.9

9

Derivatization in liquid chromatography for mass spectrometric detection

Tomofumi Santa*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Qualitative and quantitative analysis using HPLC-QQQ-MS/MS

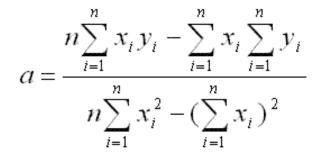
Remember:

when you use MS, you increase the number of analytical dimensions. That will NOT make you life easier.

"There were some complications. It looked way easier on YouTube."

Identification of target substances in MRM mode

1. retention time: set appropriate retention time window!


2. acquire an amount of data points that are enough for obtaining smooth gaussians

3. use qualifier ion transitions and always check ion ratios. Limits of toleration are typically $\pm 20\%$ or $\pm 30\%$.

Basic rules of quantitation using a mass spectrometer

- check selectivity, sensitivity and the matrix effect when selecting your ion transitions for quantitation
- use a calibration curve containing enough data points and covering the range of expected analyte concentrations
- perform calibration at the beginning of each sample batch
- find the proper fitting algorithm (linear or quadratic)
- use matrix calibrators if possible

Using weighted regression for generating calibration curves

Slope of weighted regression:
$$\mathbf{m} = \frac{\left(\sum w_i x_i y_i - \frac{(\sum w_i x_i)(\sum w_i y_i)}{\sum w_i}\right)}{\left(\sum w_i x_i^2 - \frac{(\sum w_i x_i)^2}{\sum w_i}\right)}$$

Intercept of weighted regression:
$$\mathbf{b} = \frac{\sum w_i y_i}{\sum w_i} - \left[\frac{\sum w_i x_i}{\sum w_i}\right] \times \frac{\left(\sum w_i x_i y_i - \frac{(\sum w_i x_i)(\sum w_i y_i)}{\sum w_i}\right)}{\left(\sum w_i x_i^2 - \frac{(\sum w_i x_i)^2}{\sum w_i}\right)}$$

ordinary least squares

 $b = \frac{1}{n} \left(\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i \right)$

weighted least squares

Weighted fits for calibration

Anal Chem. 2014 Sep 16;86(18):8959-66. doi: 10.1021/ac5018265. Epub 2014 Sep 4.

Selecting the correct weighting factors for linear and quadratic calibration curves with leastsquares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance.

Gu H¹, Liu G, Wang J, Aubry AF, Arnold ME.

Author information

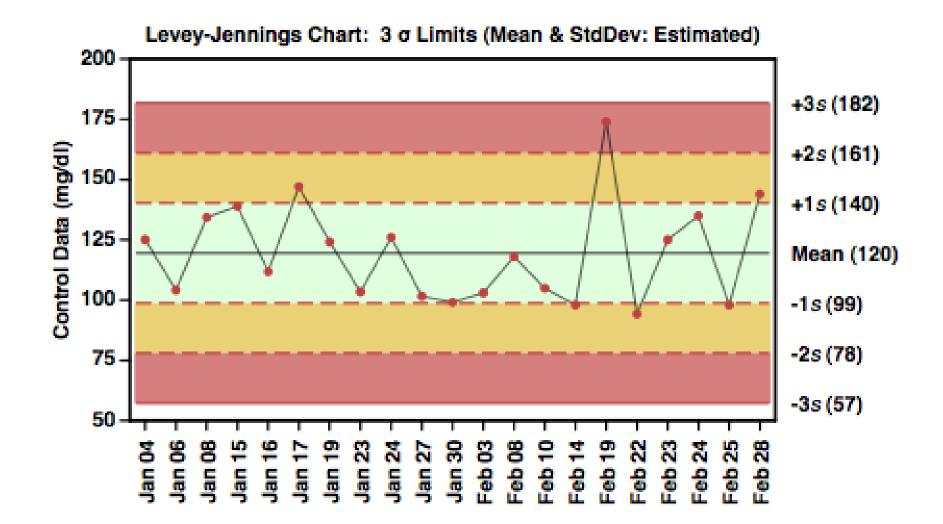
Abstract

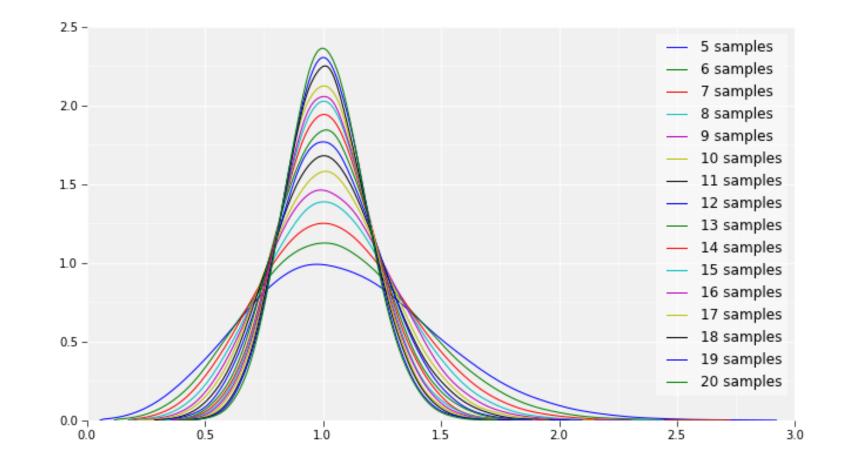
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, $\sigma(2)$ is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.

Quality control of assays – why is it important?

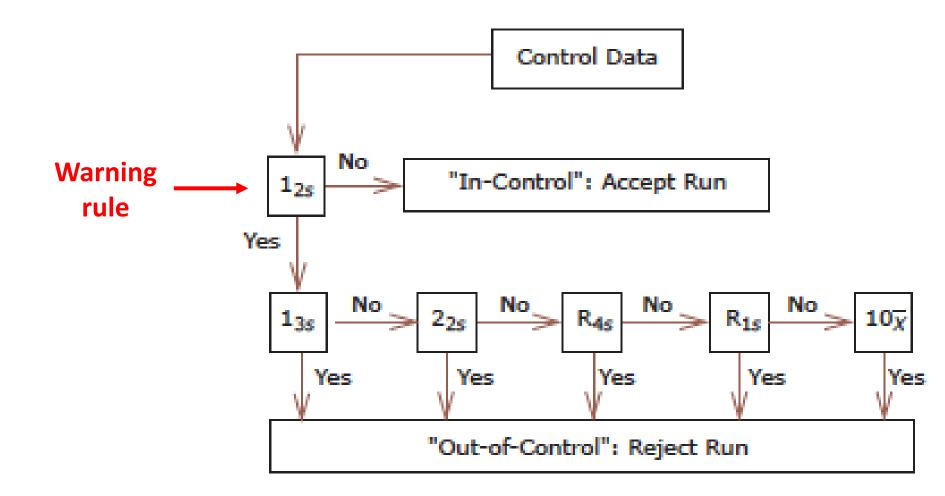
- The MS is not a stable detector → various ion transitions are affected in various manners!
- Autosampler tray stability of analytes and internal standards may not be 100% over the run.
- QC is a fundamental requirement for interlaboratory comparisons.
- misquantitation may be a result of:
 - chemical degradation
 - contamination of the ion optics
 - appearance of interferences in the ionchromatograms

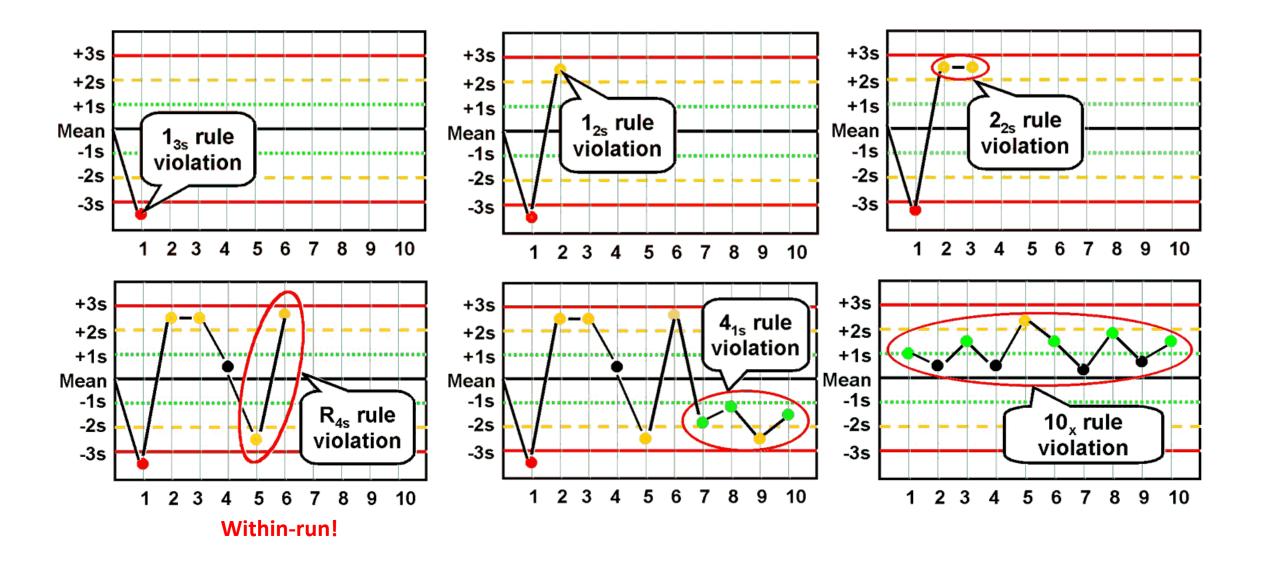
What sort of quality control do you need?

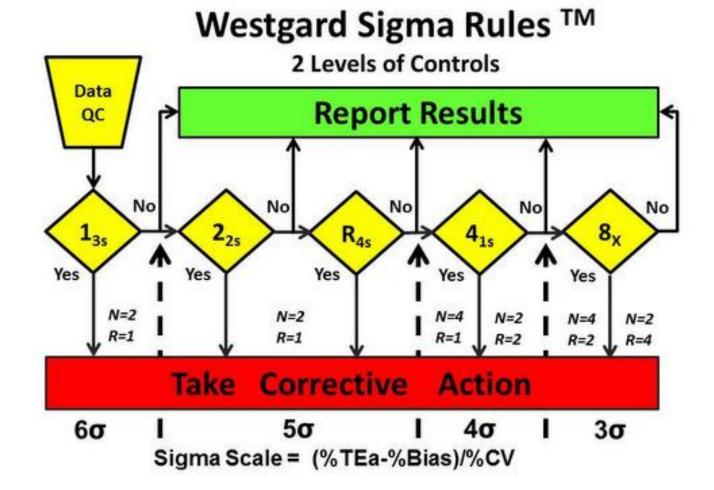

... That depends on the type and quality of information you would like to attain.


... And the regulations you are required to stick to.

Quality control of assays – approaches


Approach	Identifited assay errors
multilevel matrix controls run at least at the beginning and at the end of the batch	loss of the validity of calibration due to contamination of the ion optics
spiked matrix samples	matrix-specific contamination of the ion optics
repeat analysis	if prepared sample is reassayed: lack of system stability if collected sample is reassayed: lack of reproducibility
incurred sample reanalysis	lack of system stability
external quality assessment scheme	suboptimal method performance


Interpretation of internal QC results: Levey-Jennings curves



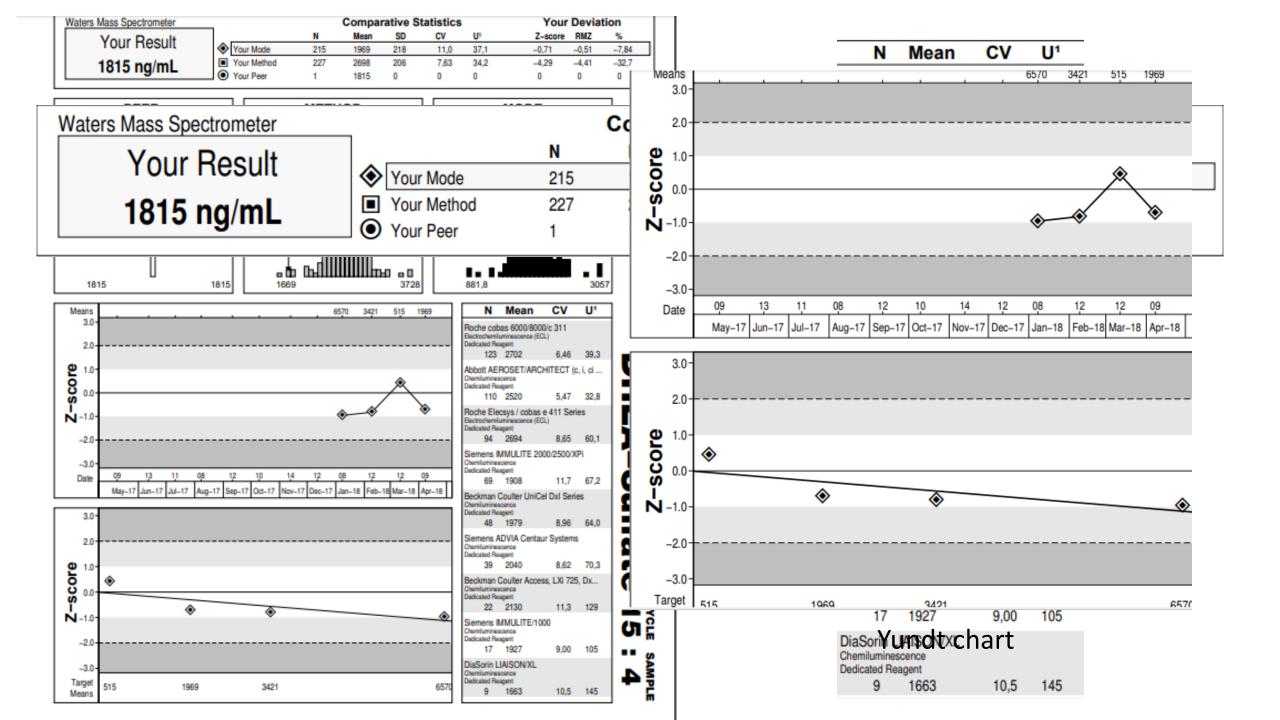
Interpretation of Levey-Jennings charts: the Westgard multirule quality control approach

Interpretation of internal QC results: the Westgard Sigma Rules

Interpretation of the reports of external quality assessment schemes

25 Hydroxyvitamin D	January 2018	Laboratory	2178
Histogra	ms		
-30% -20% -10% TARGET 10% 20%		Sample: 526 (n=842) Target Value : ALTM Your Method Mean (MM) : Your result : Bias from Target Value : Bias from ALTM : Bias from MM: All Methods Your method (LC-MS-MS)	47.3 nmol/L 52.7 nmol/L 51.4 nmol/L 56.3 nmol/L 19.0 % 6.8 % 9.6 %

DEQAS January 2018 - 25-OHD Method Means (+/-1SD) for Major Method Groups*



140.0					
. 120.0		-			
100.0					
D 100 000 00000000000000000000000000000					TTT
0.00					
C 0.08 40.0 40.0					
0.0	Sample 526	Sample 527	Sample 528	Sample 529	Sample 530
Abbott Architect New Kit (n=70)		100.4	75.7	22.1	49.3
Beckman Unicel (n=32)	48.8	82.2	68.0	29.6	57.2
DiaSorin Liaison (n=197)	56.4	101.3	82.1	25.1	57.6
IDS iSYS (n=51)	56.9	105.1	79.4	23.1	58.4
IDS-ISYS New (n=14)	55.9	103.1	83.5	22.7	70.3
Roche Total (n=152)	52.3	92.6	73.7	28.0	58.3
Roche Vitamin D total II (n=25)	48.7	86.7	70.7	24.0	56.6
Siemens (n=65)	53.3	93.5	79.7	28.6	63.9
HPLC (n=16)	48.1	91.9	70.3	22.4	54.2
LC-MS/MS (n=154)	51.4	95.9	75.3	23.8	62.7
ALTM (n=842)	52.7	96.1	76.6	25.4	58.2
TARGET VALUE	47.3	89.4	70.8	20.5	58.3

Distribution	Sample No.	NIST 3-epi-25-OHD3 nmo/L	NIST 25-OHD2 nmol/L	NIST 25-OHD3 nmol/L	NIST 'Total' 25-OHD (25-OHD3 + 25-OHD2) nmol/L	DEQAS ALTM nmol/L	% Difference *
October 2016	501	6.5	2.8	93.4	96.2	100.4	4.4
	502	1.4	1.2	38.8	40.0	41.5	3.8
	503	5.5	1.4	79.2	80.6	87.1	8.1
	504	2.9	2.0	55.5	57.6	64.1	11.3
	505	0.9	0.7	21.0	21.7	23.5	8.3
January 2017	506	2.5	1.3	54.5	55.8	52.4	-6.1
	507	4.1	1.5	73.1	74.6	73.1	-2.1
	508	n/a	1.9	29.5	31.4	29.4	-6.4
	509	n/a	1.1	70.4	71.6	67.9	-5.1
	510	12.1	0.5	134.1	134.6	133.6	-0.8
April 2017	511	(4.3)	1.5	65.7	67.2	72.5	7.9
	512	(2.7)	1.9	44.9	46.8	49.9	6.6
	513	(6.8)	0.8	102.8	103.7	104.4	0.7
	514	(1.5)	0.6	27.1	27.7	29.6	6.9
	515***	(3.0)	18.5	47.7	66.2	66.3	0.2
July 2017	516	2.9	1.3	45.2	46.5	47.3	1.7
July 2017	517	7.1	0.8	45.2	68.3	70.5	3.4
	518	8.7	1.2	103.7	105.0	110.3	5.1
	519	2.7	1.1	32.1	33.2	33.1	-0.3
	520	8.3	1.2	102.9	104.1	110.0	5.7
October 2017	521	2.1	1.0	39.6	40.5	41.2	1.7
	522	9.1	1.0	83.9	84.9	89.3	5.2
	523	1.2	3.5	22.5	25.9	25.7	-0.8
	524	14.1	0.9	107.9	108.8	124.8	14.7
	525	3.8	0.8	55.6	56.3	61.5	9.2
January 2018	526	3.0	0.9	46.5	47.3	52.7	11.3
-	527	5.5	1.0	88.4	89.4	96.1	7.5
	528	4.5	1.9	68.9	70.8	76.6	8.2
	529	1.4	0.7	19.9	20.5	25.4	23.7
	530***	2.8	21.5	36.8	58.3	58.2	-0.1

Results from the NIST Reference Measurement Procedure for the October 2016 to January 2018 25-hydroxyvitamin D EQA Samples

BIO-RAD	Lab 145728 SE LABORATORIUMI M NAGYVARAD TER 4. BUDAPEST 1083 HUNGARY	Immunoassay	Immary Repo (Monthly) Pro	Dec 20 Sample D	Cycle 15 17 - Dec 2018 Sample No: 4 ate: 09 Apr 18 ot No: 231400	EQAS External Countily Assurance Services
Instrument: Shin	nadzu LC-MS Unit	Result	Mean	Z-score	RMZ	Comporato
Analyte						Comparato
✓ 11-Deoxycortisol	ng/mL	0,04	0,158	-0,96	-1,05	Mode
Analyte	lem Mass Spectron Unit	Result	Mean	Z-score	RMZ	Comparato
17-a-OH-Proges	terone ng/mL	5,82	5,79	0,04	-0,64	Mode
Aldosterone	pg/mL	253,7	286	-1,07	-0,68	Mode
Androstenedione	ng/mL	1,78	1,89	-0,17	-0,09	Mode
Cortisol	ng/mL	87,7	104	-1,64	-3,16	Mode
🖌 DHEA	ng/mL	0,67	2,03	-1,79	-1,93	All
Progesterone	ng/mL	9,68	11,4	-1,19	-1,24	Mode
 Testosterone 	ng/mL	4,18	3,26	1,77	2,03	Mode
-Instrument: Wate	ers Mass Spectrome	eter				
Analyte	Unit	Result	Mean	Z-score	RMZ	Comparato
DHEA-Sulfate	ng/mL	1815	1969	-0,71	-0.51	Mode
DHEA-Sulfate egend: No Warnings	ng/mL	1815		-0,71 e < 3,0 X Z-s		

