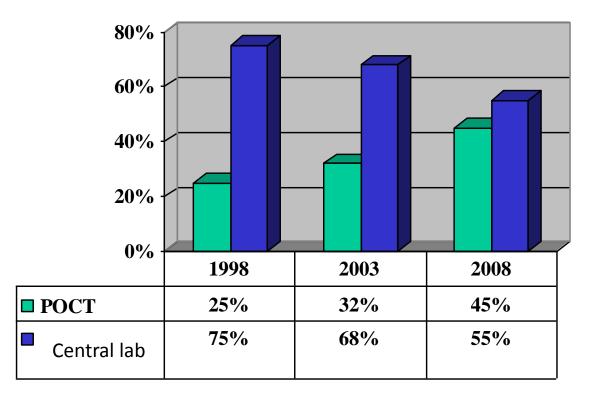

POCT – point of care testing

POCT – what is that / when is it justified?

- There is no lab nearby
- Immediate decision is required
- Logistics hard to be resolved
- More simple / cheaper when it done on field

Generally done


- Glucose
- Blood gase / electrolytes
- Urinary strip / chemistry / pregnancy
- Blood in stool
- Hemoglobin
- ESR
- Blood typing
- Strep test

Other options

- Cardiology markers
- Drug / toxicity
- Hemostasis tests
- D-dimer
- Lactate
- Lipid
- HbA1c
- Microalbumin, creatinine
- H.pylori, rotavirus, influenza
- PTH, ACTH, growth hormone
- Sepsis
- Stroke
- DNA

- BEDSIDE TESTING
- EMERGENCY TESTING
- POINT-OF-CARE TESTING
- CRITICAL CARE TESTING
- PATIENT FOCUSED TESTING
- NEAR PATIENT TESTING
- DECENTRALIZED LAB. TESTING
- SELF/HOME MONITORING TESTING
- PÁCIENS KÖZELI LABORVIZSGÁLAT

Increase of POCT tests within total number of lab tests

POCT categories

Tests in an outpatient Self monitoring tests setting

POCT

Emergency tests

Specific tests

POCT - glucose

Source of errors

- Measured in an inapporpriate timepoint
- Few blood. Forced pressure; contaminated with lymph. (Area should be warmed with water; side of finger 3 or 4 should be spiked).
- Too much blood; test area may be contaminated.
- Dirty reading area of test device
- Expired strip (inappropriate storage)
- Data are not recorded
- Not clear who use the device (data are not retrievable)

Some words on urinary strip analysis

Composition of the urine

- 95% water, 5% soluble material
- Straw yellow; concentrated urine is darker
- Specific gravity is in wide range (1.005-1.030)
- pH 4,6 8
- Aromatic odor
- <u>Absent normally:</u>

glucose, ketone, blood, protein (<80 mg/l), bilirubin, nitrit, leukocytes

Urinary tests with strips are easy to perform. However, false results may be obtained with inappropriate methods

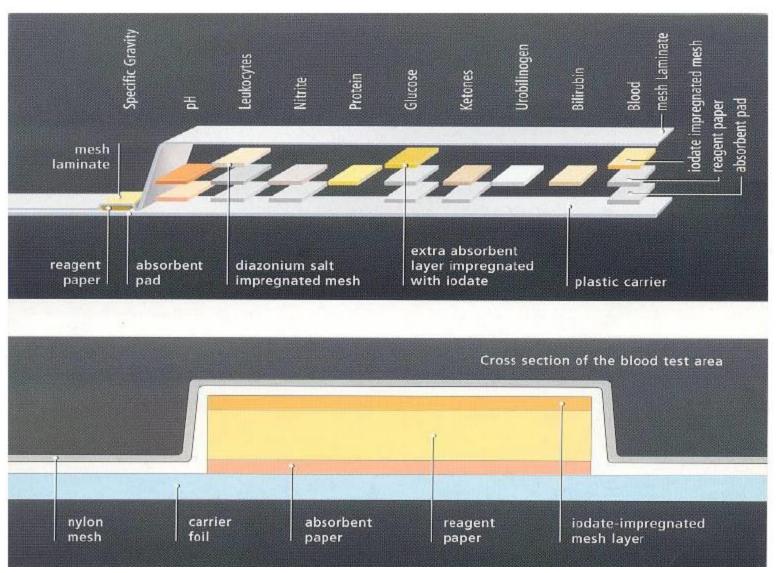
- Expired or inappropriately stored strip (storage: cool and dried place, tightly capped containers)
- Color code is not read correctly
- Bad technique
- Strip is turned upside down during testing
- Insufficient time is allowed for reaction
- Reagent pads are touched

Urinary strip testing is easy to perform, but

- You should inspect the sample before testing:
- Fresh samples should be used
- Samples should be kept on room temperatures
- Appropriately mixed sample should be used

Before strip: inspect the sample

Feature	Cause	Note	
No color	Diluted samples	polyuria; artefact (?)	
Turbid	Salts, crystals, cells, semen, mucin, pus, contaminated with stool, contrast agent		
Milky	pus, lipiduria, chyluria, paraffine	Vaginal gels	
Orange	Concentrated urine, urobilin or bilirubin	Dehydration, fever; yellow foam in case of high bilirubin	
Greenish-yellow, Brownish- yellow	bilirubin-biliverdin	yellow foam	
Red	hemoglobin, RBC, myoglobin	Strip indicates	
	Porphyrin, fuscin, anilinf dye	Strip does not indicate	
Brownish black	Methemoglobin	Acidic urine	
	Melanin, homogentizin acid	Unfresh sample	
Cyanic	Chlorophyil	Mouth deodorants	
	Pseudomonas-infection		


Drugs discoloring the urine

Drug	Color
Ethanol	Light (diuresis)
Senna (anthraquinone laxative)	alkaline: red; acidic : yellowish brown
Deferoxamine mesilate (iron	Red
chelator)	
Etoxazan (urinary analgetics)	orange, red
Fluorescein-sodium (IV)	Yellow
Nitrofurantoin (antibacterial agent)	Brownish yellow
Indigocarmine (cystoscope, renal	Blue
function testing)	
Iron sorbitol (supplement)	Brown after a while
Levodopa (anti-Parkinsonian)	Red, then brown

Drugs discoloring the urine

Drug	Color
Metildopa	darkening; reddish brown in the presence
	of oxidising agents
Metronidazol (antibacterial)	Dark; reddish prown
Phenazopiridin (urinary analgetics)	Reddish-yellow (acidic pH)
Fenindion (anticoagulant)	Orange (alkaline pH)
Fenfolftalein (laxative)	Red-purple (alkaline pH)
Rifampin	Light orange – yellow
Ribaflavin (multivitamin)	Light yellow
Sulfasalazin (ulcerous colitis)	Orange – yellow (Alkaline pH)

Structure of urinary strip

Specific gravity 1,003 – 1,035

Components responsible for SG:

- Urea: 20%
- NaCl: 25%
- Sulphate & phosphate salts

Principle:

- Polyelectrolyte, indicator and buffer.
- Acidification proportionally to ionic strengths
- pH dependent indicator

Limitations / notes:

• Not altered by glucose, protein, contrast agents

• pH

Acidic: consumption of meat, some fruits (blueberry); sleeping (compensating of ventilatory acidosis); NH4Cl, methionin, metenaminmandelate [used for phosphate and calcium-carbonate stones] Alkaline: citrus fruit, after a meal, NaHCO3, citrate, acetasolamide [used for uric acid, cistin, calcium-oxalate stones, potentiation of neomicin, canamicin, streptomicin effect, therapy of salicilate intoxication], renal tubular acidosis

Principle:

Indicator: methyl red and bromotimol-blue (orange, green & blue) Interference: higher with storage (CO2 levels decrease, NH4 produced by bacteria

• protein

Normal: Max. 150 mg/day, 200 different species; 1/3 albumin, 1/3 uromucoid [Tamm-Horsfall glycoprotein produced by distal tubular cells], remnant: globulins, IgA, cellular fragments, WBC.

Principle:

Tetrabromphenol blue, acidic pH: pH increased in the presence of proteins; blue color in the presence of protein, indicates level above 100 mg/l

Interference: false negative in very thin urine. false positive: concentrated & alkaline urine, quaterner ammonium or chlorhexidin; NO interference with drug, contrast agent or turbidity

note: particularly sensitive for albumin

Microalbuminuria

Principle immune reaction [Micral II]

Oxytetracycline increases the level; no intereference with pH

Color reaction [Clinitek]

- Interference with Tamm-Horsfall protein

glucose

Principle:

glucose + O2 ---- glucose oxidase → gluconic acid + H2O2 H2O2 + chromogenic ----peroxidase → oxidized chromogenic + H2O

Interference:

false positive: oxidising agents (detergents in container), low gravity false negative: high gravity, ascorbic acid, ketones, salicylates, L-DOPA, sodium-fluorid, bacteria

NO interference with other sugars

• **Ketone** (acetacetate, 20%, acetone 2%, 3-hydroxy-butirate, 78%)

Principle:

Color reaction of acetacetate and acetone with nitroprusside

Interference:

false positive: ftaleins (sulphobromoftalein, phenolsulphonftalein dye), phenylketonuria, Ldopa, antihypertensive agents: methyldopa and captopril

• Blood (hem)

Principle: based on hem peroxidase activity
RBCs are lysed
H2O2 + chromogenic --→ oxidized chromogenic + H2O
(tetramethylbenzidine: green)
10 RBC/HPF [3 mg/l]
Detects the presence of both hemoglobin and myoglobin

Interference: RBCs may sediment. Sensitivity decreased: high gravity, high protein content false negative: ascorbic acid, formalin Nitrit: reaction is delayed false positive: hypochlorite, iodine, bacteria (peroxidase)

Jaundice

result	normal	Biliary obstruction	Hemolysis, hemolyticus anemia	Liver damage, hepatitis, cholestasis
urinary bilirubin	No	Increased in dark urine	No	In the beginning increased
urinary urobilinogen	Detectable	Tumor —low or absent; Stone – varying	increased	In the beginning decreased; then increased
Color of the stool	Dark	Light; in the presence of biliary stones intermittant; persisting in presence of tumor	Dark	In the beginning light, then dark (hepatitis); light (cholestasis)

• Bilirubin

Principle: chromogenic reaction (diazonium salt) **Interference**: levels decrease in unfresh urine / light exposure, high ascorbic acid levels, high nitrit levels, red urinary sample

Levels increase: rifampin and chorpromazine No interference: urobilinogen

Urobilinogen

Principle: chromogenic reaction (Ehrlich-aldehid reaction, or diazonium-salt)

Interference: interference with red drug metabolites; decrease in unfresh urine

• Nitrite

Nitrit producing bacteria: E. coli, Klebsiella, Enterobacter, Proteus, Staphylococcus, Pseudomonas species

At least 4 hours are required to produce a sufficient amount of nitrits by bacteria \rightarrow first specimen in the morning

NO NITRIT POSITIVE: *Enterococcus*

In general, 70% sensitivity

In hospital infection it is more frequent that this test is negative

Principle: chromogenic reaction

Interference:

<u>false positive</u>: unfresh urine, urinary coloring agents (phenazopiridine) <u>false negative</u>: ascorbic acid, urobilinogen, low pH (<6), random

sample (sample from catheters), insufficient amount of nitrate in diet

• WBC (leukocyte esterase) also detects cell fragments

Principle: Neutrophyl esterases hydrolyse esters; the generated alcohol is detected by chromogenic reaction

Interference:

Decreased by: high urinary gravity, protein, glucose, ascorbic acid

Increased by: vaginal discharge (presence of squamous cells and bacteria), oxidising agents and formalin

• ascorbic acid

Interferes with glucose, blood, bilirubin, nitrit, and leukocytes tests

Principle: chromogenic reaction

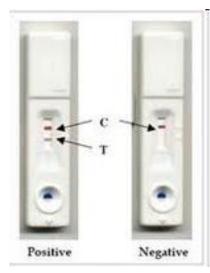
phosphomolibdate → molibden-blue, 50 mg/l. Interference: gentisin acid and L-DOPA

or:

Methylene green \rightarrow dyscoloration. Interference: alkaline pH, bilirubin

Take home message

In general, test results obtained with urinary strips are interferred by:


- Color of urine
- pH
- Presence of reducing or oxidising agents (ascorbic acid & detergents)

Other analytes – specific tests

- hCG test detects one week of pregnancy
- Drug detection severe limitations (not sensitive to derivatives)

Serological quick test: GLORIA

- Gold Labelled Optical Read Immuno Assay
- Ab attached to vehicle +
- Ag present in sample
- = **Ab-Ag** Immune complex1
- +
- Gold labelled secondary antibody
- Ab-Au* (FREE)
 - = Ab-Ag~Ab-Au* (BOUND)
- Basic principle of quick tests

Detection of blood in stool

- FOBT: fecal occult blood test cholorimetric reaction of guajachol with hemoglobin dietary restriction
- FIT: antibody against hemoglobin.
 not sensitive to upper gastrointestinal bleeding detects human Hb alone

More specific POCT tests

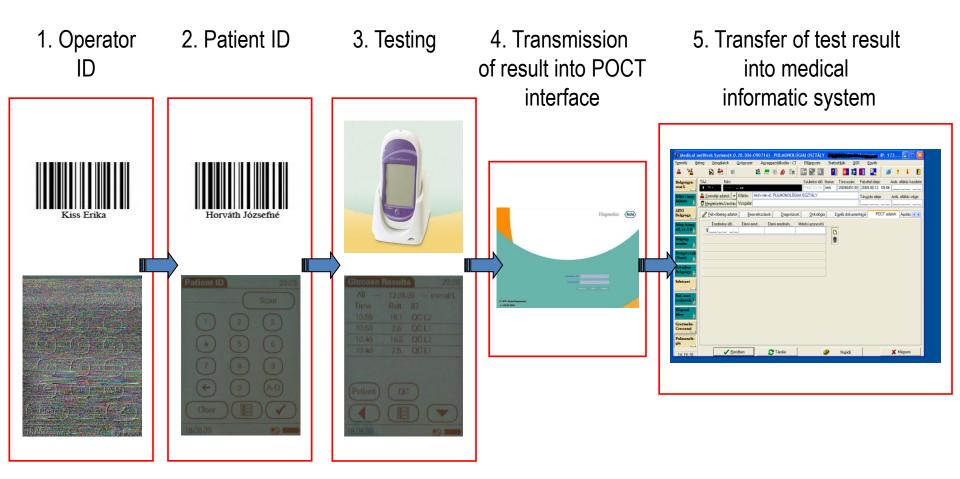
- Breath tests
- Cystic fibrosis test
- Continuous glucose monitoring system (CGMS)
- Blood glucose monitor

Criteria for utilization of POCT tests for clinical decision making

Criterion

Professional use of POCT device

Appropriate functionin of POCT device


Measurements are documented

POCT in a hospital

Use of an integrated hospital system

- Information link between departments and the lab
- Devices can be / are connected to the system.
- Lab is able to monitor / validate the results remotely
- Documentation.

POCT in hospital: integrated informatic system

Benefits

- Support immediate clinical decision making
- Quick
- Comfortable for the patient / the doctor

Risks:

- Expensive
- Not sufficient training
- QC / maintenance is often not solved
- Absence of documentation

(unidentified sample, unrecorded data)