Obturation of the Root Canal System: cold and warm techniques

Dr János Vág Phd
Department of Conservative Dentistry
Semmelweis University
Based on Cohen's Pathways of the Pulp 10th edition, Chapter 10
CHAPTER OUTLINE

IMPORTANCE OF EFFECTIVELY SEALING THE ROOT CANAL SYSTEM

HISTORICAL PERSPECTIVES

TIMING OF OBＴURATION
- Vital Pulp Tissue
- Necrotic Pulp Tissue

LENGTH OF OBＴURATION

PREPARATION FOR OBＴURATION

THE IDEAL ROOT CANAL FILLING

TYPES OF SEALERS
- Zinc Oxide and Eugenol
- Calcium Hydroxide Sealers
- Noneugenol Sealers
- Glass Ionomer Sealers
- Resin
- Silicone Sealers
- Bioceramic
- Medicated Sealers

SEALER PLACEMENT

CORE MATERIALS
- Silver Cones
- Gutta-Percha
- Activ GP
- Resilon
- Custom Cones

METHODS OF OBＴURATION
- Lateral Compaction
- Warm Vertical Compaction
- Continuous Wave Compaction Technique
- Warm Lateral Compaction
- Thermoplastic Injection Techniques
- Carrier-Based Gutta-Percha
- Thermomechanical Compaction
- Solvent Techniques
- Pastes
- Immediate Obturation

CORONAL ORIFICE SEAL
The necessity of obturation

• Pulpal remnants, necrotic tissue, bacteria, and bacterial by-products remaining - initiate a lesion
• Cannot be completely cleaned and disinfected

• Obturation reduces coronal leakage
• seals the apex
• entombs the remaining irritants
Ideal root canal filling

- Core material + sealer
- Obturated root canal should reflect the original canal shape
- Radiographic interpretation
Function of the Sealer

• to seal the space between
 • the dentinal wall and the obturating core
 • gutta-percha points
• To fill voids and irregularities in the root canal, lateral and accessory canals
• lubricants
Ideal sealer (Grossman)
At present no sealer satisfies all the criteria.

Properties of an Ideal Sealer

- Exhibits tackiness when mixed to provide good adhesion between it and the canal wall when set
- Establishes a hermetic seal
- Radiopaque, so that it can be seen on a radiograph
- Very fine powder, so that it can mix easily with liquid
- No shrinkage on setting
- No staining of tooth structure
- Bacteriostatic, or at least does not encourage bacterial growth
- Exhibits a slow set
- Insoluble in tissue fluids
- Tissue tolerant; that is, nonirritating to periradicular tissue
- Soluble in a common solvent if it is necessary to remove the root canal filling
Types of Sealers

- zinc oxide–eugenol
- calcium hydroxide sealers
- glass ionomers
- resins
Zinc Oxide and Eugenol

- Long time usage, still on the market
- slow setting time, shrinkage on setting, solubility, discoloration
- antimicrobial activity
Calcium Hydroxide Sealers

- Antimicrobial activity, osteogenic–cementogenic
- Solubility
Glass Ionomer Sealers

- dentin-bonding – difficulties to treat apical and middle thirds with preparatory bonding agents
- Retreatment?
- minimal antimicrobial activity
Resin

• AH-26 (Dentsply), epoxy resin with formaldehyde, slow-setting
• AH Plus, no formaldehyde, 4 hours.
• Diaket, a polyvinyl resin (3M ESPE)
AH Plus (gold standard)

 - Low solubility
 - High stability
 - Slighty Thixotrop
 - Adhesion to dentin, good penetration
 - Good sealing
 - Slight expansion
- Disadavantage:
 - No bonding to guttapercha
EndoREZ (Ultradent Products, South Jordon, UT), methacrylate resin, hydrophilic properties. EndoREZ resin-coated gutta-percha cones
Epiphany/resilon RealSeal (Kerr?) 2004

“monoblock”
Silicone Sealers

• RoekoSeal (Colténe/Whaledent, Germany) is a polyvinylsiloxane, expand slightly on setting

• GuttaFlow (Colténe/Whaledent) cold flowable gutta-percha added to RoekoSeal, single master cone, 25 to 30 minutes.
Bioceramic, calcium silicate-based endodontic sealers

- zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, and various filling and thickening agents.
- hydrophilic sealer it utilizes moisture
- within the canal to complete the setting reaction
- no shrinkage
- biocompatible
- antimicrobial
- master guttapercha cone (piston, synchronized)
Sealer Placement

- master cone, files, reamers
- lentulo spirals
- injection
- ultrasonics.
Core Materials

- Silver Cones
- Gutta-Percha
- Activ GP
- Resilon
- Custom Cones
Silver Cones

- Rigidity - easy to place, predictable length control
- Difficult to remove
- Inability to fill the irregularly shaped root canal
- Corrosion - cytotoxic
- Today is considered to be below the standard of care
GUTTA-PERCHA – AN UNTOLD STORY

Dr. R. Prakash*
Dr. V. Gopikrishna**
Dr. D. Kandaswamy***

ABSTRACT

“GUTTA-PERCHA” was first introduced as a restorative material and later developed into an indispensable endodontic filling material. It has become the “soul” of endodontics, in its development as a specialty.

Many articles have dealt about the various techniques of usage of Gutta-percha, but the present article deals briefly with its history, source, chemistry, commercial manufacture, its revolution and its use as a filling material, with Gutta-percha fa (Sapotaceae család, Palaquium gutta, Isonandra gutta, Dichopsis gutta)

INTI

“GETAH” - gumi
“PERTJA” - fa neve (Maláj nyelven)

1656 - John Tradescant hozta először Angliába távol keletről
1867 - Bowman - gyökértömés.
1887 - S.S White cég – első guttapercha poén
1959 – Ingle és Levine - standardizálás
Gutta-percha

- *trans* isomer of polyisoprene (rubber)
- Gutta-percha cone: 20% guttapercha, 65% zinc oxide, 10% radiopacifiers, 5% plasticizers
- two crystalline forms
 - α……natural form, runny, tacky and sticky, lower viscosity, THERMOPLASTIC FILLING
 - β……most common commercial form solid, compactible and elongatible, higher viscosity
 - γ phase - amorphous
 - Slow cooling result in α form rapid cooling result in β form

Heat:
- Heat to 42-49°C → α phase
- Heat to 56-62°C → γ phase

Aging-oxidation, brittleness → rejuvenation

β phase

- Heat to 42-49°C → α phase
 - Expansion 1-3%

Rapid cooling

Slow cooling

Shrink
Gutta-percha

- plasticity,
- Ease of manipulation
- minimal toxicity
- Radiopacity
- ease of removal with heat or solvents.
- Disadvantages: lack of adhesion to dentin
- shrinkage on cooling
Gutta-percha
Gutta-percha

- Sterilization before use: placing the cones in 5.25% NaOCl for 1 minute
Activ GP

Activ GP (Brasseler USA, Savannah, GA)
glass ionomer–impregnated gutta-percha cone + glass ionomer external coating + a glass ionomer sealer
Resilon

- Self-etch primer
- Resin sealer (25 minutes, +light cured)
- Lateral compaction or warm vertical compaction, or thermoplastic injection
- Excellent sealing, resistant to fracture, “prevent” periodontitis versus GP+Ahplus
- Biocompatible

Resin matrix of bisphenol A-glycidyl methacrylate [Bis-GMA], ethoxylated Bis-GMA, urethane dimethacrylate [UDMA], and hydrophilic difunctional methacrylates and fillers [70%] of calcium hydroxide, barium sulfate, barium glass, bismuth oxychloride, and silica.)
Custom Cones

- open apical foramen or large canal
Obturation technique

• To date little evidence exists to support one method of obturation as being superior to another and the influence of treatment technique on success/failure has yet to be determined.

• Aqrabawi JA: Outcome of endodontic treatment of teeth filled using lateral condensation versus vertical compaction (Schilder’s technique). J Contemp Dent Pract 7:17, 2006

Lateral Compaction

• most clinical situations
• length control during compaction
• with any of the acceptable sealers
• Only a few instrumentum (cheap spreaders)

• may not fill canal irregularities
Lateral compaction
Step by step

Dr. Gaurav Garg
Lecturer
College of Dentistry, Zulfi
1. Filing (+apical last mm: rotation)
2. Incrementally reducing the working length when using larger and stiffer instruments
3. More tapering: Avoid procedural error, easier rinsing, compactable filling, better copying the non-rounded cross-section
4. Cons: procedural error still occur, apical dentin plug

Step-back technique

ISO file

0.05

0.30 mm

MF: 0.25 mm

1 mm

Standardized diameter ISO

20 25 30 35 40 50 60
Objective: fill the canal with gutta-percha points (cones) by compacting them laterally against the sides of the canal walls.

Two main types of spreading instruments
- long handled spreaders
- finger spreaders

- Finger spreaders provide: better tactile sensation & less likely to induce fractures
• “Gold standard”

Advantage:
• Excellent length control

Limitations:

➢ However, this technique may not fill canal irregularities
➢ Gutta-percha cones never merge into a homogeneous mass, but they slip and glide and are frozen in a sea of cement
Schilder introduced warm vertical compaction
- a continuously tapering funnel
- keeping the apical foramen **as small as possible.**
Pluggers
Continuous Wave Compaction Technique: Temperature control instruments
Thermoplastic injection technique: Backfill
Carrier-Based Gutta-Percha
Thank you for your attention!