Instruments for tooth preparation (enamel, dentin and carious dentin)

JÚLIA DR. NEMES

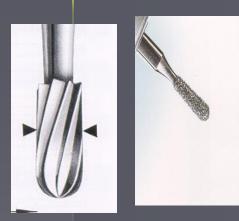
Definition of the toothpreparation

PREPARING THE TOOTH FOR FILLING are called TOOTH (CAVITY) PREPARATION

-Instrument -Knowledge, Rules

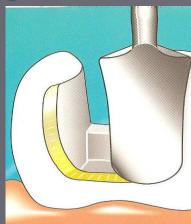
7. week 1-th MIDTERM 20 of March

Thursday 8:50-9:35


in this Room (I. Női Klinik)

after the Conservative lecture

Possibilities for preparation



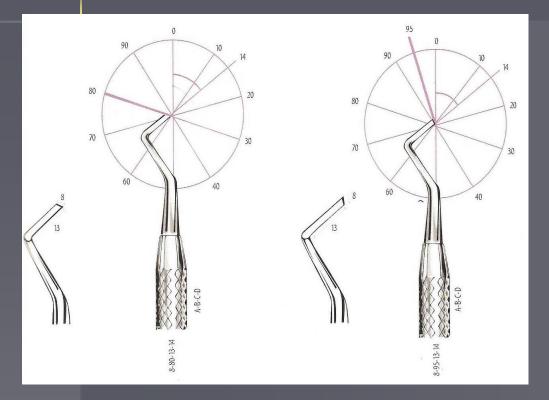
Hand instruments
Rotary cutting instruments
Oscillating instruments
Laser

 Chemical-mechanical caries removing
 Air abrasion

Hand Instruments G.V.Black classification

Nowdays hand instruments are not used for primer preparation.

- Advantage: not caused iatrogen damage
- Disadvantage: very low effectivity
- Instruments for enamel preparation: Chisel (Black) Hatchet <u>Gingival margin trimmer</u> *
- Instruments for dentin preparation:
 <u>Excavator (spoon*</u>, hoes and hatchet)


Most of them are paired instruments!

Characterisation of the hand instruments 3 (or 4) data

- Width of the blade (in tenths of a millimeter o,1 mm)
- Blade length (in mm)
- Blade angle (in clokwise centigrade)

Exception: Gingival margin trimmer 4 data! Primary cutting edge angle (in clockwise centigrades.)

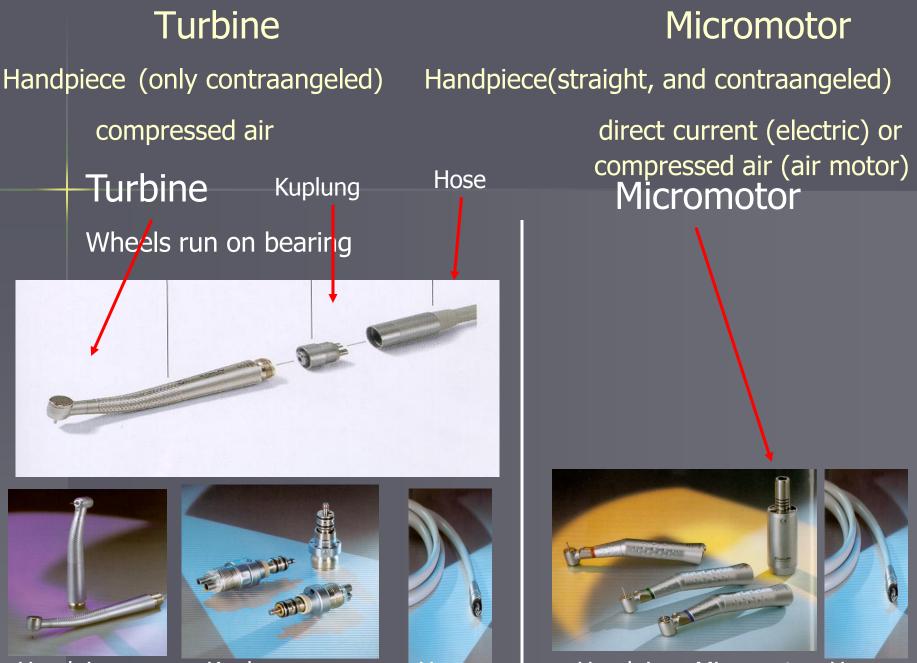
Gingival margin trimmer 4 data!

Paired instruments

A Width of the blade (in tenths of a millimeter o,1 mm 8) **B** Primary cutting edge angle (80) C Blade length (in mm13) D Blade angle: in clockwise centigrade 14

Rotary (powered, driving) cutting equipment (hand, foot, electric, turbina, micromotor, airmotor)

Foot engine 1871

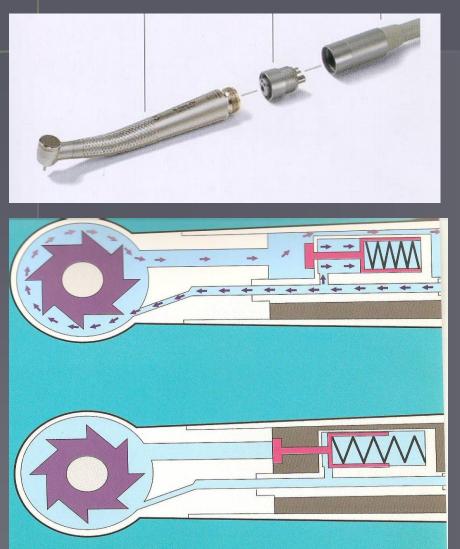

Dental unit

Rotary cutting instruments DEVELOPMENT

IN DRIVING (in equipments)IN CUTTING INSTRUMENTS (burs)

Driving: hand

- foot engine 1871 Morrison (700 rpm)
- electric driving: elektric engine, mikromotor
- air driving: turbina, airmotor


Handpiece

Kuplung

Hose

Handpiece Micromotor Hose

Turbine (vheels are in the head of handpiese)

Vheels are in the head of contraangle-handpiece.

When turbine is in operation, some of the drive air flows into the vheels and then into the valve, opening the exhaust-air passage.

Immediatly the turbine is switched off, the valve seals the exhaust-air, preventing the aspiration of contaminated aerosol.

TURBINE (1956)

- Speed:

 -free running speed:
 300-450.000 rpm
 -speed for load: half
 of the free running
 speed
- Direction of the running can't be changed!
- Speed for load: change

Air-bearing-, ball-bearing turbine (ceramik ball)

Air-bearing 310.000 rpm 2,5 bar

Ball-bearing with ceramic balls 440.000 rpm 3,5-4 bar

MICROMOTOR (1966)

<u>Electric micromotor:</u>

max. revolution: 40.000rpm

 Direction of the running can be changed!

Speed for load is constant!

Air-motor:

max. revolution: 25.000rpm

- Direction of the running can be changed!
- Speed for load is constant!

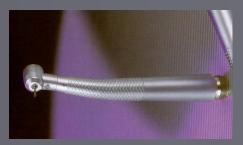
Changing of the revolution in case of micromotor (Akcelerator, Reductor)

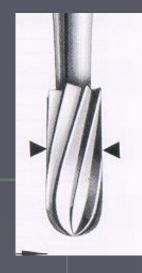
	Electric	Air	
	motor	motor	
Blue ring	4.000-40.000	5.000-25.000	Ĩ
1:1			C.C.
Red ring	20.000-200.000	25.000-	Contraction and the second
1:5		125.000	
Green ring	800-8.000	1.000-5.000	Pro
5:1			
7,4:1			Cooling:
2,8:1			- out or inner

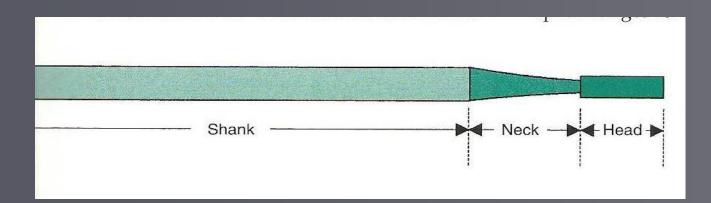
Surgical and endodontical handpieces (Driving moment!)


Handpieces:

can be

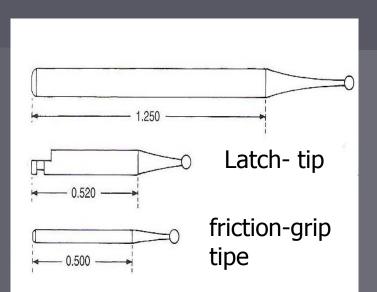

straight handpiece contra-angled handpiece latch-type burs friction grip (FG) type burs


Function of the handpieces


holds the rotating instrument, and
 transportes the power for rotating instrument.

Rotary cutting instruments burs, diamonds (abrasives)

Every (one) has his own function!



Functions of the shank, neck and head of rotary cutting instruments

 Shank: fits into the handpiece: length, crosssection and the endshape can be different.
 Shape: straight handpiece, latch tip, and friction-grip tipe contraangle handpiece

 Neck: transmit the rotational and translational forces to head.
 It has taper form, and the taper can influence the visibility, the access and the strength.

 Head: makes the preparation. The shape and the material of the head depends on the work (enamel, dentin, or carious dentin)

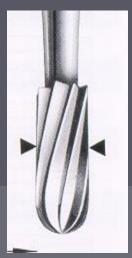
Head of the rotary cutting instruments

Rotary cutting instruments: according to the material of the head can be: diamond and metall burs.

 Diamond: is an abrasive instrument, consist of three parts.

> The <u>metal blank</u>, that holds the <u>diamond grits</u> and the <u>bonding material</u>. Size of the diamond grits can be different.

CONSTRUCTION of the diamond bur


size of the diamond grit (color code)the bonding material

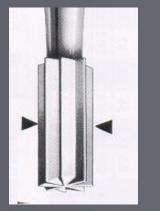
 Using diamond for preparation with grit size >ISO 524 (cc. 45µm and surface roughness >30 µm,) we always has to finish the prepared surface!

Head of the rotary cutting instruments

Metal (Bur): has bladed cutting edges.

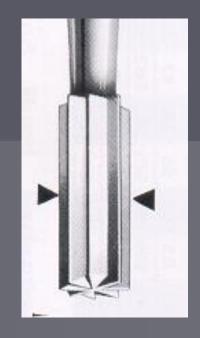
Steel burs: cut the dentin at low speed well, but not good for enamel preparation!

Carbide burs: perform better at all speeds. It is possibility to use both into the enamel and dentin!


CONSTRUCTION of the metal bur

-number of the blades: The more are the number of the blades, the smoother is the prepared surface. Blades:

bur: (4,6,8, 10) excavating bur finishing bur (12, 16,18,30)
-direction of blades straight or axial spiral
Both can be manufactured with or without crosscuts.



Shape of the burs and diamond

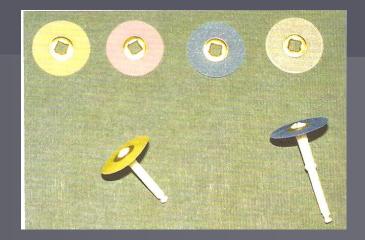
Round
Straight fissure
Tapered fissure
Pear-shaped
(Inverted cone)
Flame

SIZE of the bur SIZE: The largest diameter of head in 1/10 mm.

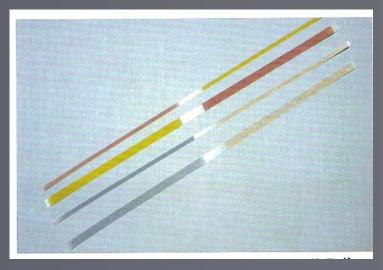
-005 diameter : 0,5 mm -010 *"* 1,0 mm -016 *"* 1,6 mm -023 *"* 2,3 mm

The bigger is the diameter of the bur, the smaller speed can we use, to achieve the suitable effect (output).

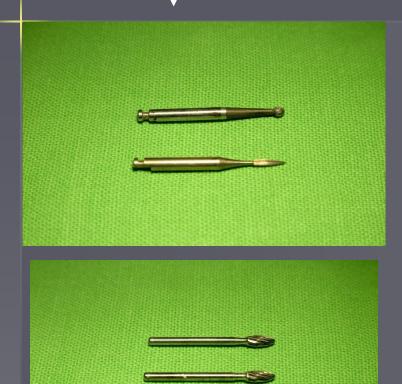
Recommendation for instrument choice

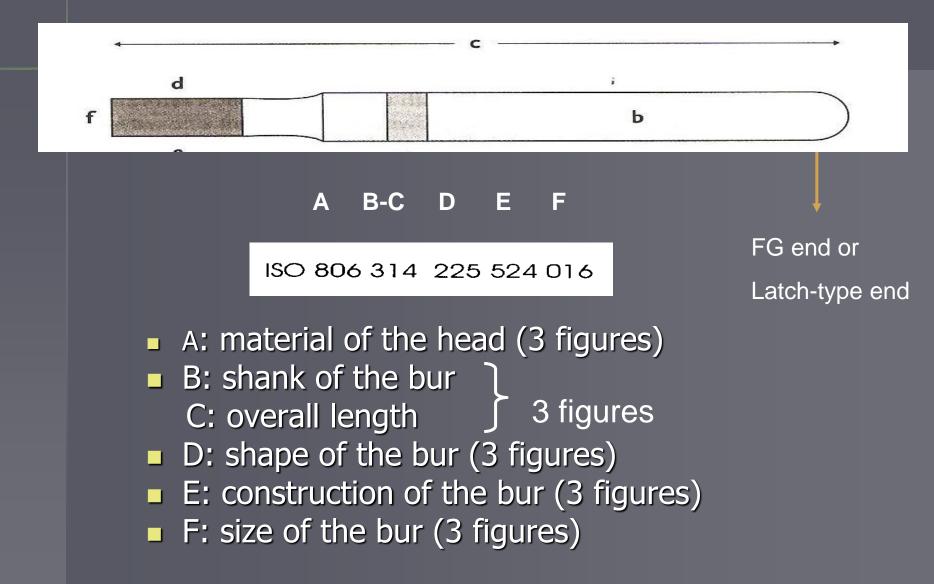

Speed
 Burs


 the material
 the shape
 the size


For Preparation/Finishing

Finishing and polishing the compositfilling




FINISHING POLISHING AMALGAM FILLING

International standard for selection of burs ISO 6360

Preparation for direct restoration

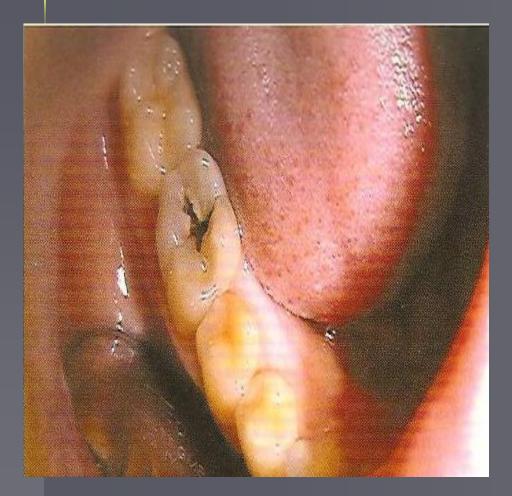
Steps, instrument, speed

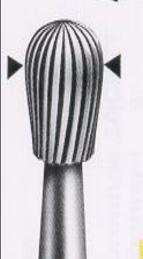
Primer preparation: turbine, micromotor (akcelerator) 170-200.000 rpm
Material: diamond ISO 806
Shank and full length: FG end, normal ISO 314
Shape: pear, fissure round ISO 233,234,
Grained: middle (blue) ISO 524
Size: depends on.. ISO 008-014

Removing of caries: micromotor (blue) 4.500-6.000 rpm Material: steel, or hardmetal ISO 310, 500 Shank and full length: latch-type, normal ISO 204 Shape: round ISO 001direction! Size: different ISO 008-014

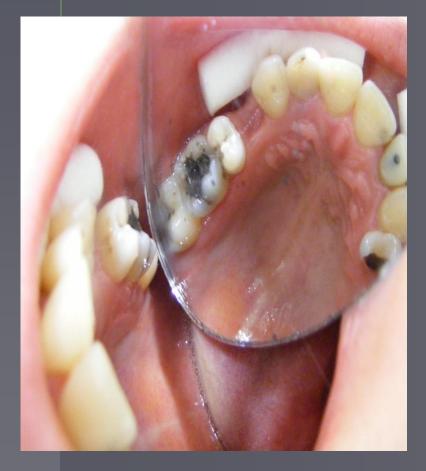
Finishing: micromotor (akcelerator) 10.000-40.0000 rpm Material: diamond, metal Shank and full length: FG end Shape: similar to be used in primer preparation Construction: diamond: fine, ultra, extra fine grit (red, yellow white)

hard metal: 16,18 cuttig edges

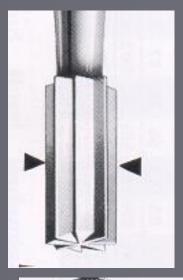


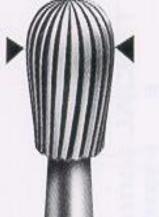


Primer preparation: Turbina, Mikromotor (akcelerator)170-230.000 Diamond bur Sekunder preparation: Caries removing Micromotor (blue) Steel or hardmetall bur

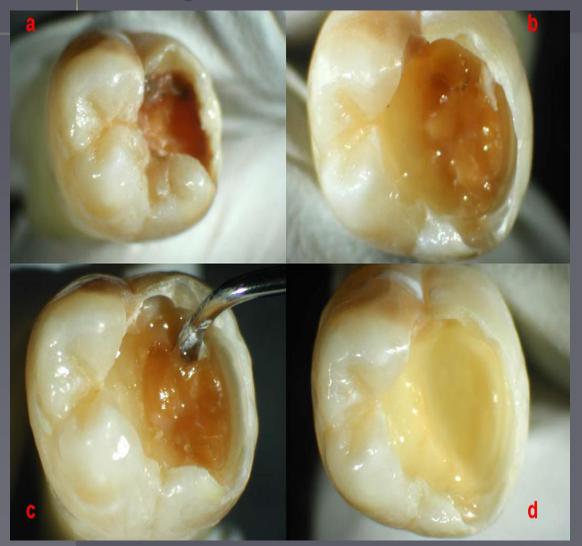

Removing of old filling

Material:


amalgam: hard metall (rubber dam or exhaustor)


komposit: hard metall or diamond

Primer preparation: Turbine, Micromotor (akcelerator)170-230.000 hard metall bur Sekunder preparation: Removing caries Micromotor (blue) Steel or hard metall bur



Caries excavation using a spoonshaped hand excavator

- (a) Original cavitated mandibular molar,
- (b) carious dentinen with peripheral sound dentine exposed after enamel removal,
- (c) infected dentine excavated with hand instrument, and
- (d) completed caries excavation with "scratchy" sound dentine remaining.