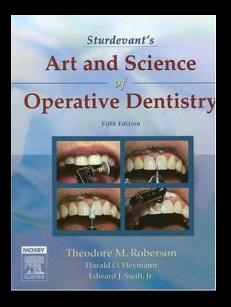

Komposit Materilakunde der Komposit

Dr. Peter Komora



- E. Hellwig/J.Klimek/T.Attin Einführung in die Zahnerhaltungskunde
- Fazekas Árpád Megtartó fogászat és endodoncia
- Sturdevant's Art and Science of Operative Dentistry

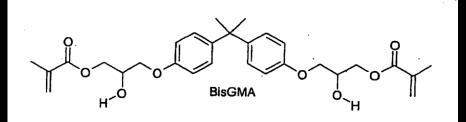
"Unter Kompositen versteht mann dem Wortsinn nach zusammengesetzte Werkstoffe"

"In der Zahnmedizin werden unter Kompositen zahnfarbene, plastische Füllungswerkstoffe verstanden, die nach Einbringen in eine Kavität chemisch oder durch Energiezufuhr aushärten"

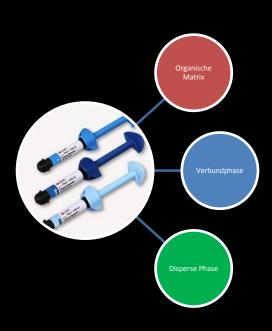
HISTORIE DER KOMPOSIT

Silikatzement

- Fletcher
- Toxisch
- Silikatnekrose

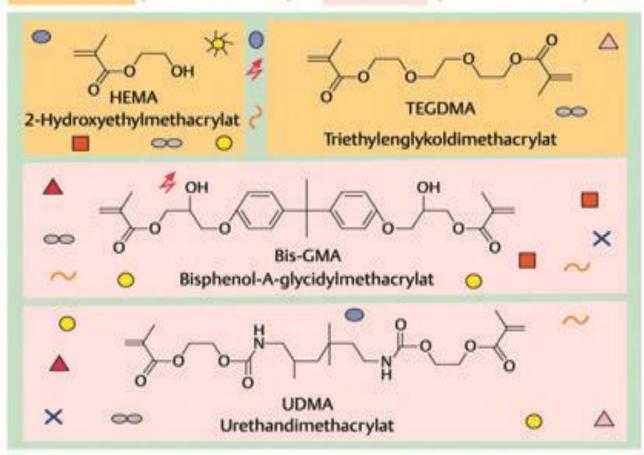

Acrylat, Polymethhylmethacrylat (PMMA)

- Hohe Polymerisationsschrumpfung
- Nicht ausreichend abrasionsstabil
- Hohen Restmonomer
- Verfärbung


- 1962
- Rafael Bowen
- Bisphenol-A mit 2 mol Glycidilmethakrylat
- Bisphenol-A-Glycidil-Dimethakrylat (Bis-GMA)

Hauptbestandteile von Kompositen

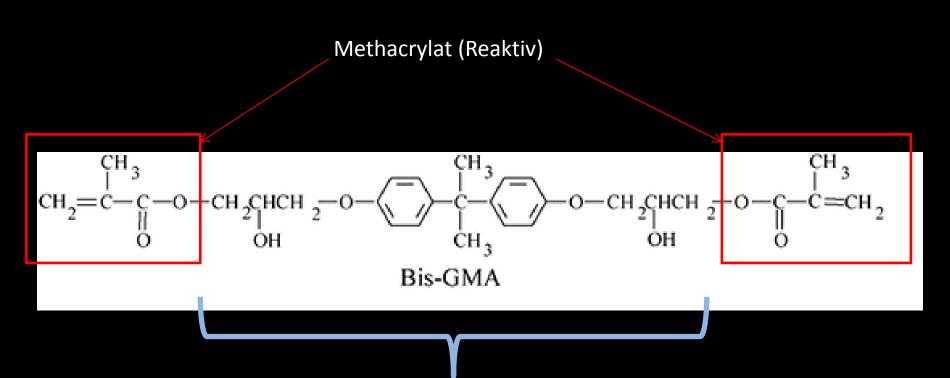
- 1. Organische Matrix
- 2. Disperse Phase (anorganische Füllkörper)
- 3. Verbundphase (Silan-Schicht, Silan-kopolimerization)


Abkürzung- Kurzbeschreibung	Chemische Bezeichnung	
Bis-GMA	Bisphenol-A-Diglycidyl-Methacrylat sog. Bowen-Kunststoff	
UDMA TEGDMA EGDMA	Urethandimethacrylat Triethylen-Glycol-Dimethacrylat Ethylen-Glycol-Dimethacrylat	
Peroxide BHT	Benzoylperoxid Kampferchinon z.B.Dihydroxyethyl-p-Toluidin Butyliertes Hydroxy-Toluol	
Silan	z.B. Methacryloxypropyl-trimethoxysilan	
-	Bis-GMA UDMA TEGDMA EGDMA Peroxide BHT	

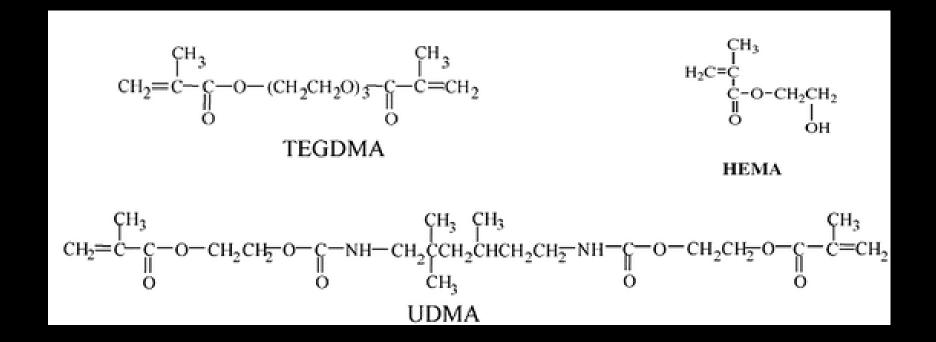
Organische Matrix

- Monomer (Bis-GMA, UDMA)
- Komonomer(TEGDMA, EDMA)
- Initiator
- Akzelerator
- Farbpigmente
- Inhibitor(Stabilisator)
- Photostabilisatoren
- Additiva (Weichmacher, optische Aufheller, Lichtschutzmittel)

B. Inhaltsstoffe von Kompositzahnfüllungen

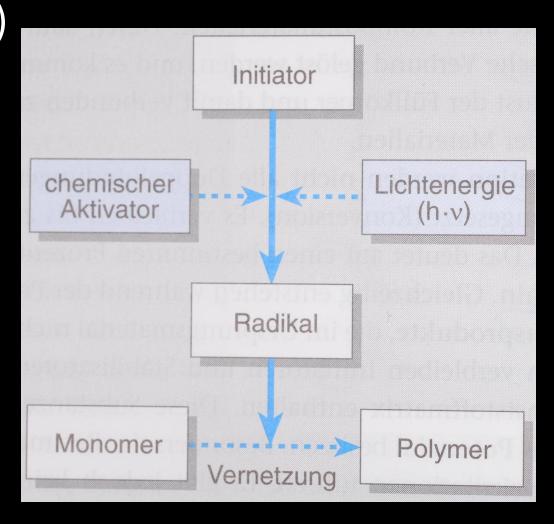

Comonomere (= HEMA, TEGDMA) + Monomere (= Bis-GMA, UDMA)

weitere Inhaltsstoffe in Kompositfüllungen:


- Photoinitiatoren (z. B. Campher-Chinon)
- thermische Initiatoren (z. B. Peroxide)
- Akzeleratoren (z. B. Amine)
- Photostabilisatoren (z. B. Benzotriazole)
- Inhibitoren (z. B. Phenolderivate)
- Weichmacher
 (z. B. Polyvinyl-butyral)
- X Quarze
- Siliciumdioxid
- Farbpigmente
 (z. B. Eisenoxid-Pigmente, Yttrium-Fluorid)
- Silan-Haftvermittler

Monomer

Zentrale Molekül Mechanischen Eigenschaften


<u>Komonomer</u>

Initiatoren

Benzoylperoxid (Chemisch)

Kampferchinon (Licht)

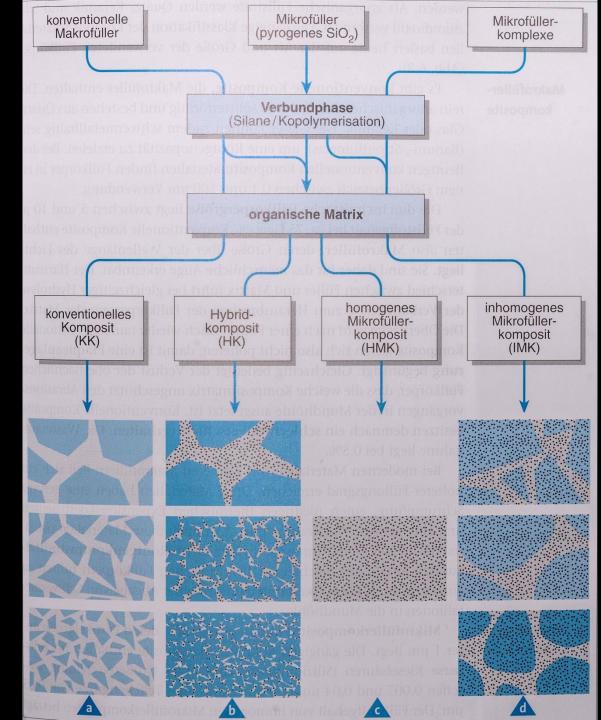
Disperse Phase (Füller)

- Quarz, Silizium-Dioxid, Keramik
- Röntgenkontrastmittel
- Härte, Druck- und Zugfestigkeit
- Abrasionsstabilität
- Polymerisationsschrumpfung verringern

Disperse Phase (Füller)

Name	Füllkörpergröße
Makrofiller	10-100 μm
Midifiller	1-10 µm
Minifiller	0,1-1 µm
Mikrofiller	0,01-0,1 μm
Nanofiller	0,005-0,001µm

Verbundphase (Silan, Kopolymere)


Hydrophobisierung des Füllstoffs

Polymerisation der Monomere mit dem Methacrylatsäurerest des Silans

3-methacryloxy-propyl-trimethoxysilane	$CH_2 = C(CH_3)COO-$	(CH ₂) ₃	Si(OCH ₃) ₃	Siço O
Vinyl-trimethoxysilane	$-CH = CH_2$	-	Si(OCH ₃) ₃	Si Co
3-Isocyanate-propyl-triethoxysilane	-N = C = O	(CH ₂) ₃	Si(OCH ₂ CH ₃) ₃	
3-Mercapto-propyl-trimethoxysilane	-SH	(CH ₂) ₃	Si(OCH ₂ CH ₃) ₃	° si si H
3-Amino-propyl-triethoxysilane	$-\mathrm{NH}_2$	(CH ₂) ₃	Si(OCH ₂ CH ₃) ₃	H ₂ N Si – O

Einteilung der Kompositen

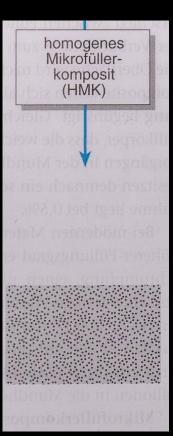
- Nach Füllkörper (nach Lutz)
- Nach Konsistenz (flowable, packable)
- Nach Monomersystem
 - Klassische Methacrylate
 - Kompomere
 - Ormocere
 - Silorane
- Nach Art der Aushärtung
 - Chemisch
 - Licht

Einteilung nach Lutz

Makrofüllerkomposit/Konvenzionelles Kompozit

konventionelles Komposit

(KK)

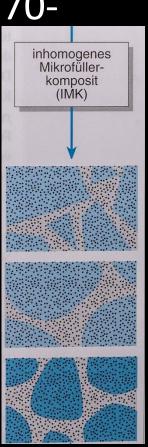

- Hohe mechanische Festigkeit
- Geringe Polymerisationsschrumpfung
- Geringe thermische Expansionskoeffizient
- Füllgrad von 75 Gew% (0,1-100μm)
- Geringe Verschleißfestigkeit
 - Härteunterschied zwischen Füllstoffen und Matrix
 - Herausbrechen der Füllstoffpartikel (durch Hydrolyse)
- Schlechte Polierbarkeit (Verfärbung, Plaquaanlagerung)

Homogenes Mikrofüllerkomposit

0,007-0,04μm (kugelförmig)

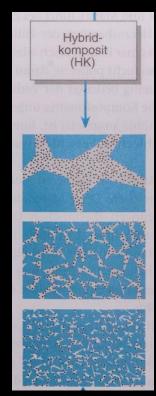
 max 50 Gew.% Füllstoffgehalt (hohe spezifische Oberfläche)

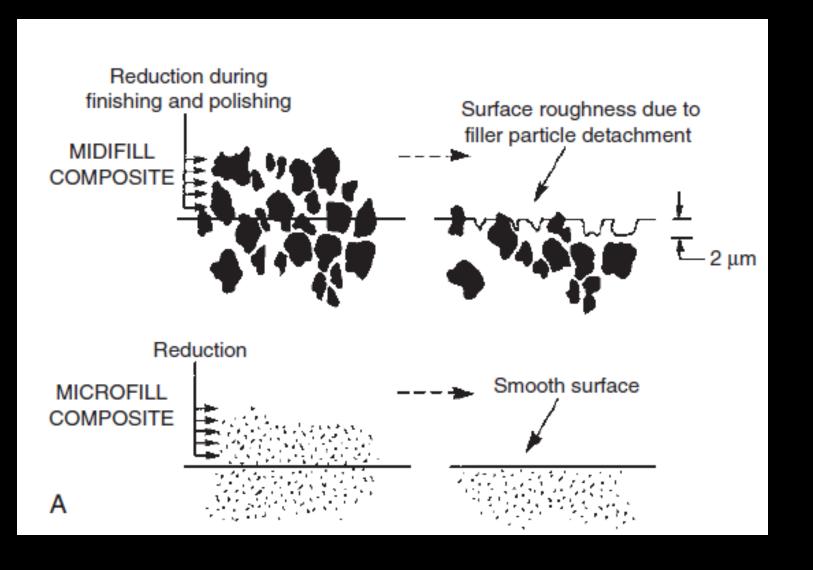
- Hohe Polymerisationsschrumpfung
- Schlechtere mechanische Eigenschaften
- Geringe Verschleißfestigkeit
- Sehr gute Polierbarkeit



Inhomogenes Mikrofüllerkomposit

- Vorpolymerisate
- Füllstoffgehalt kann weiter erhöht werden (70-


80%)

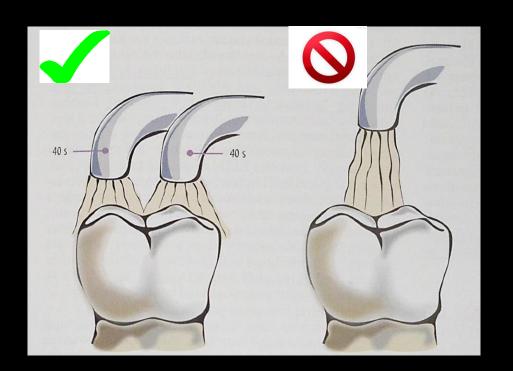

- Schwachstelle:Grenzfläche zwischen
- Vorpolymerisaten und Matrix
- Empfindlichkeit auf Verarbeitungsfehler
- hohe Schrumpfung

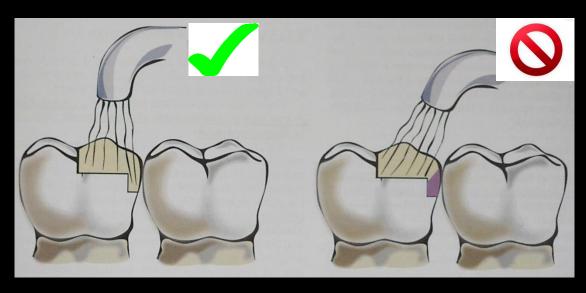
Hybridkomposit

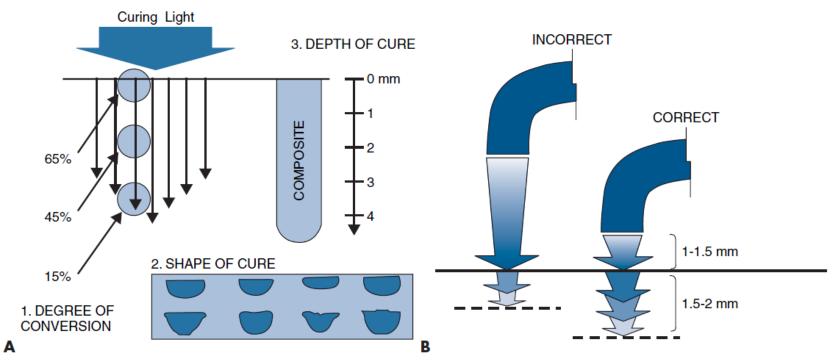
- Füllstoffgehalt bis zu 85 Gew.%
- 10-15 Gew.% Mikrofüller und 70-80 Gew% Makrofüller
- Gute ästhetische und physikalische Eigenschaften
- Hohe Verschleißfestigkeit
 - Hybrid-midifill
 - hybrid-minifill
 - Submikrometer- Hybridkomposite
 - Nanofüllerkomposite

Polymerisationsschrumpfung

Spannung
Randspaltbildung. Randverfärbung Sekunderkaries, Fraktur dünner Füllungsränder, postoperativer Empindlichkeit


Spannung → Rissen der Füllkörperoberfläche → Verlust der Füllkörper


Schrumpfungrichtung, Schuchttecknik benutzen (max. 2mm)


Die Art der Lichtquelle (Intensität, Wellenlänge)

Abstand der Licht

Die Zusammensetzung des Komposit und dessen Farbe haben

FIGURE 4-76 Light intensity influences on polymerization zone. A, Varying light intensity with width and depth affects the degree of conversion of monomer to polymer, shape of cure, and depth of cure. B, Proximity of curing light to the surface affects the depth of penetration of light into the surface.

Kompomere

Polyalkensäure modifizierte Komposite Matrix:

bifunktionelle Monomere Erhärtung:

- 1. Polymerisation
- 2. Säure-Base Reaktion

Füllstoff:

Disperse SiO₂ Partikel (0,1-10μm)

Fluorosilikatgläser

Pigmente, Initiatoren, Stabilisatoren

Kompomere

Verarbeitung

Wie Komposit – Adhäsivsystem (selbstkonditionierendem)

Eigenschaften

Fluoridfreisetzung

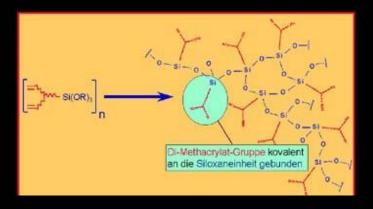
Schrumpfung (2-3Vol%)

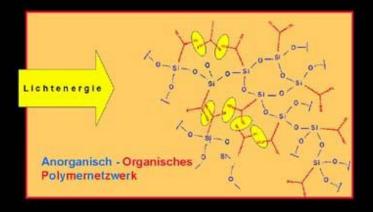
Wasseraufnahme

Geringere Abrasionsstabilität (Milchgebiß)

Geringeres E-Modul (Klasse V.Kavitäten, keilförmige Defekten)

Geringere Ästhetik

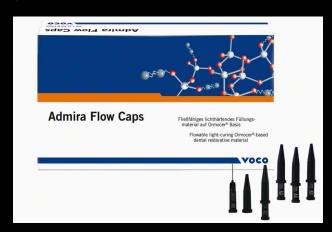

Verwendung

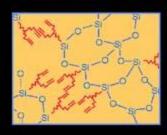

Füllungsmaterial (Milchzahn, Klasse V.Kavitäten, keilförmige Defekten) Befestigungszement, Fissurenversiegelung, Stumpfaufbau, Unterfüllung

Ormocere (Organically Modified Ceramic)

- Anorganisches Netzwerk
 - (Si-O Gerüst) mitMethacrylatgruppen(organische Monomeren)

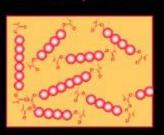
 Lichtpolymerisation (Verbindung der Matrixmoleküle)




Ormocere

- Füllstoff
 - Bariumglas und modifizierte Apatite
- Eigenschaften
 - geringere Polymerisationsschrumpfung
 - bessere Abrasionsfestigkeit
 - geringere Restmonomergehalt

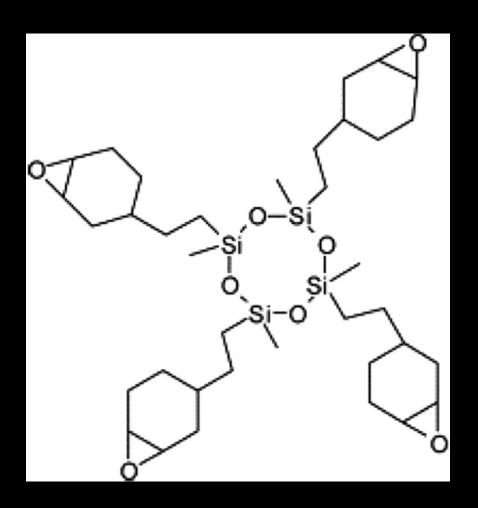
aber! schlechte Polierbarkeit



ORMOCER

Methacrylatgruppen kovalent an Polymernetzwerk gebunden

Komposit


organische (Di)methacrylat -Einzelmoleküle

Silorane

Grundgerüst:

Polysiloxan-Skelett

- Vernetzung über
 Oxirangruppen durch
 kationische Polymerisation
- geringe Schrumpfung
- verminderteWasseraufnahme
- gute Druckfestigkeit

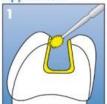
Spezielle Kompositmaterialien

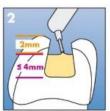
Smart Dentin Replacement

DENSPLY

SDR® – Smart Dentin Replacement The Original Bulk Fill Composite for Posteriors

SDR™ Filling Technique – simple and efficient



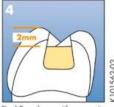


Posterior Bulk Fill Flowable Base

Application:

Apply acid conditioner followed by adhesive or self-etching adhesive. Light cure.

Increments up to 4mm. 2mm short of the cavosurface margin.



Light cure 4mm increments.
*Light output ≥ 550 mW/cm²

Caution, consult Instructions for Use

© DENTSPLY DETREY 2009-07-15 www.dentsply.de

Final 2mm layer with composite restorative.

Entdecken Sie die Stärke der Glasfasern

,'GC,'

- Glasfasern verhindern die Rissausbreitung in Füllungen und Zahnstruktur
- Die Bruchfestigkeit entspricht der von Dentin und ist fast doppelt so hoch wie bei anderen Compositen, was für beispiellos stabile Restaurationen sorgt
- 4 mm-Schichten können gleichzeitig gehärtet werden
- Zuverlässige Adhäsion an jeglichem darüber liegenden Composite sowie an der Zahnsubstanz

Profitieren Sie von der einfachen 4 mm-Schicht-Applikation

KLASSE I-KAVITÄT

Präparieren der Kavität

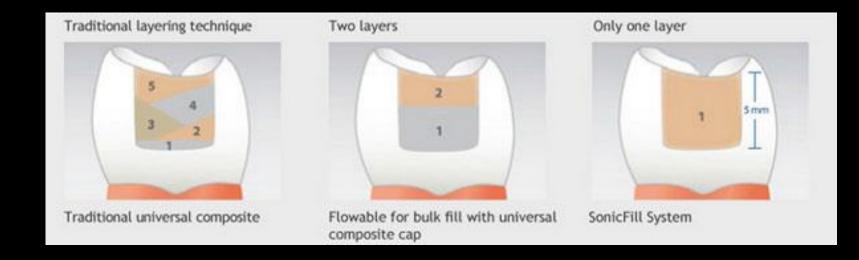
Adhäsive Vorbehandlung und Lichthärtung

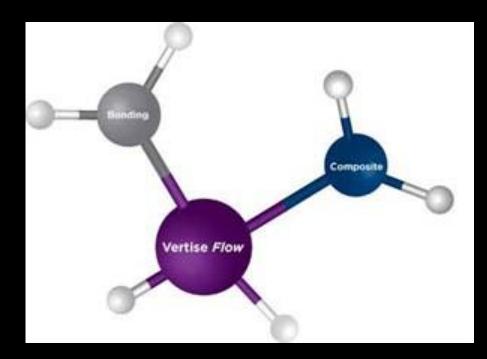
Zunächst modellieren der fehlenden Kavitätenwände mit Compositematerial

Ein-Schicht Applikation von everX Posterior bis zu 4 mm

Lichthärtung für 10-20 Sek.

Abdecken mit Composite





Change the way you do dentistry!

Self-etch. Self-Adhesive

Danke für die Aufmerksamkeit