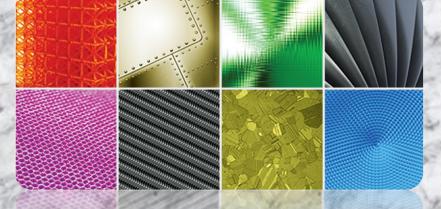


Biosafety on nanobiomaterials

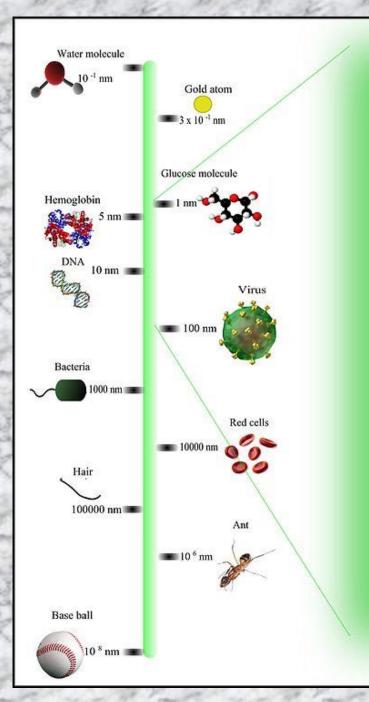
Gastón Fuentes Estérez, PhD

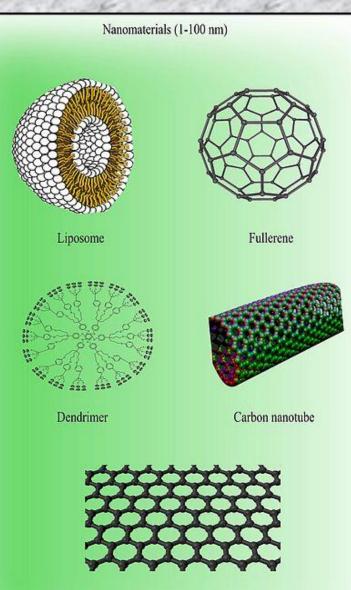

TNI Group, Dept. of Radiology, LUMC, Leiden, The Netherlands
 Biomaterials Center, University of Havana, Havana, Cuba

Nanobiomaterials

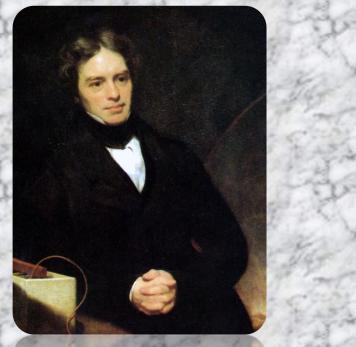
Nano + bio + materials

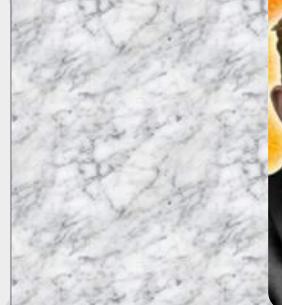
Nanobiomaterials


Nano + biomaterials



Nano


from greek *nain* means very small



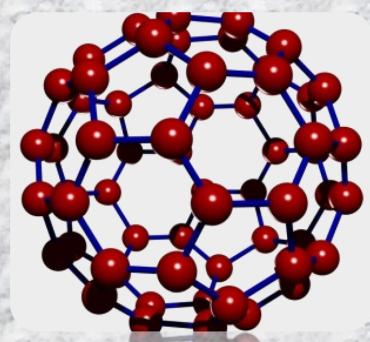
Graphene

Precursors and facts

Michael Faraday (1791-1867). He founds the colloidal gold (1857)

Albert EinsteinInving Langmuir(1879-1955). Physics(1881-1957).Nobel Prize 1905. HeChemistry Nobel Prizeexplain the colloids'1932 when found theexistencemolecule layers

Richard P. Feynman (1918-1988). Nobel Prize 1965. He described the possibility of synthesis via direct manipulation of atoms in the talk *There's Plenty of Room at the Bottom* in a congress of American Physics Society, December 29th, 1959. Norio Taniguchi (1912-1999). The First Lifetime Achievement Award of the European Society for Precision Engineering and Nanotechnology in 1999. The pioneer to use the word **nanotechnology** mainly consists of the processing of separation, consolidation, and deformation of materials by one atom or one molecule

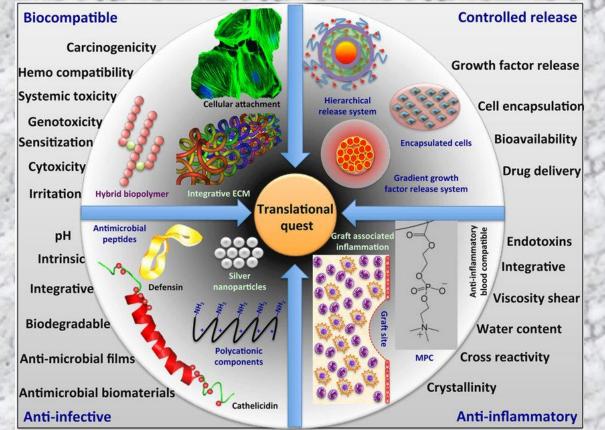

Kim Eric Drexler (born April 25, 1955). His 1991 doctoral thesis at MIT published as a book received the Association of American Publishers award for Best Computer Science Book of 1992. He wrote Engines of Creation: The Coming Era of Nanotechnology

1980s, two major breakthroughs sparked the growth of nanotechnology in modern era

Tunnel effect microscopy

The scanning tunneling microscope (STM), was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s at IBM Research - Zurich, a development that earned them the 1986 Nobel Prize for Physics. Fullerene

Harold Kroto (University of Sussex), Robert Curl and Richard Smalley (University of Rice) were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of the fullerenes family.



Prof. David F. Williams

1.Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986

BIOMATERIALS

A biomaterial is a nonviable material used in a medical device, intended to interact with biological systems. Biocompatibility is the ability of a material to perform with an appropriate host response in a specific application.¹

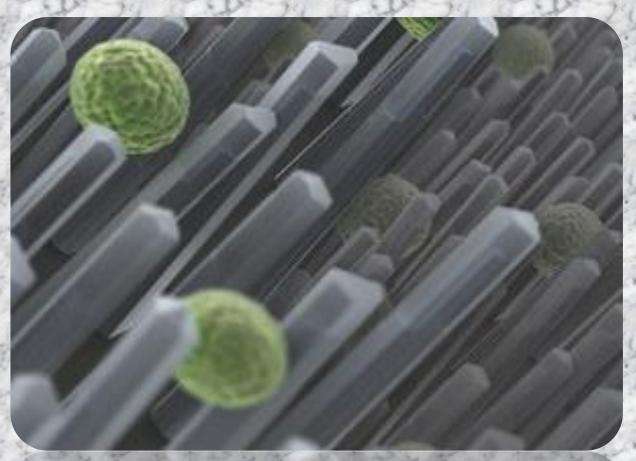
a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body²

2. D. F. Williams. On the nature of biomaterials. *Biomaterials* 2009, **30:** 5897–5909

BIOMATERIALS

Substance that has been designed to interact with biological systems for a medical purpose

Cochlear Replacements


Contact Lenses

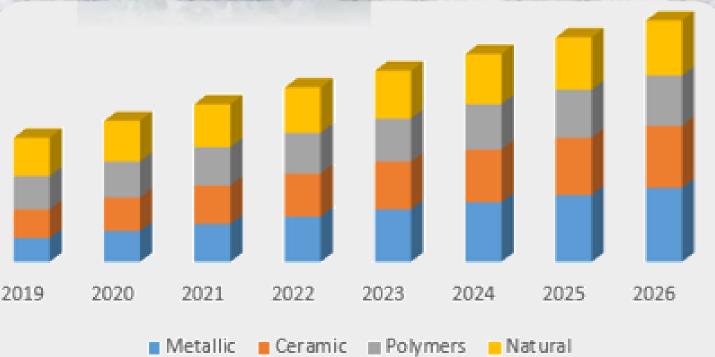
Dental Implants

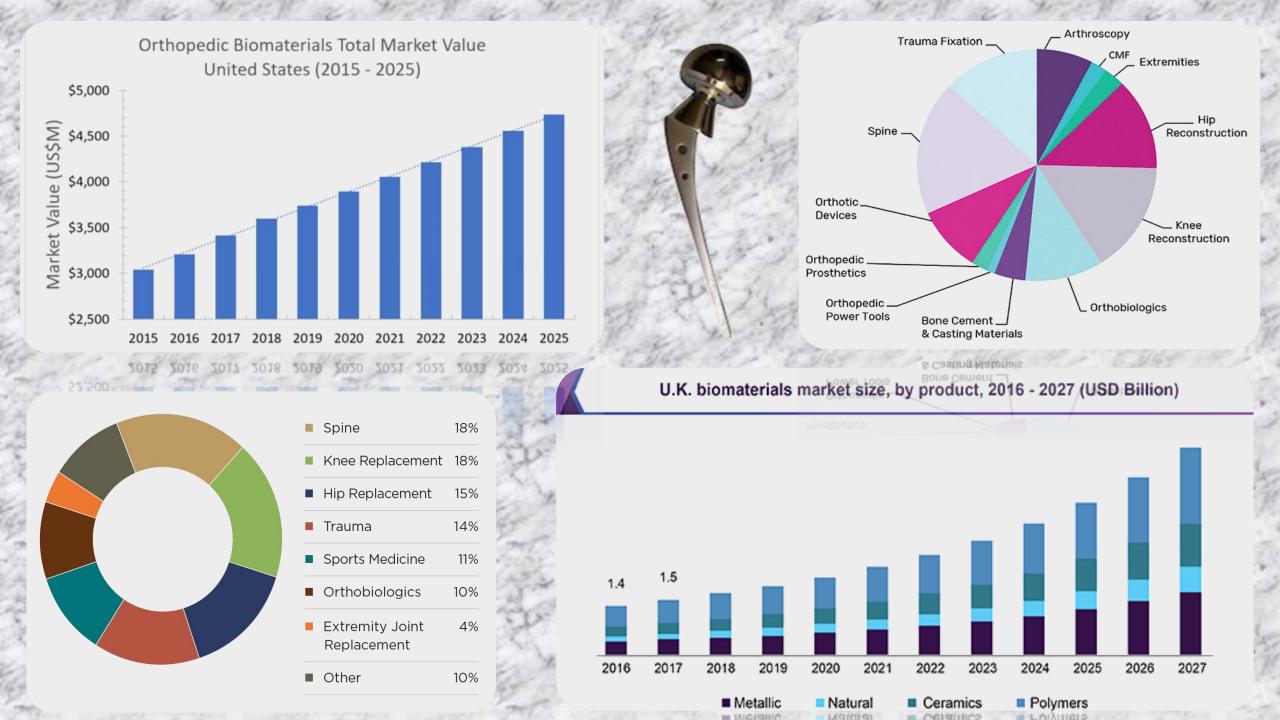
Skin Repair Devices

NANOBIOMATERIALS

The combination of nanotechnology and biomaterials has provided great opportunities to improve the preclusion, diagnosis, and treatment of various diseases. It is traditionally defined as a special category of biomaterials with constituent or surface sizes not more than 100 nm at less in one dimension and extended to several hundreds of nanometers today in the other dimensions

- J. Wang, H. Li, L.Tian, S Ramakrishna. Nanobiomaterials: State of the Art in: Nanobiomaterials: Classification, Fabrication and Biomedical Applications. X. M. Wang, M. Ramalingam, X. D. Kong, and L. Y. Zhao, Eds. Wiley-VCH Verlag GmbH & Co. Weinheim, Germany (2018) pp. 3-4
- L. Yang, L. Zhang, T. J. Webster. Nanobiomaterials: State of the Art and Future Trends. Advanced Engineering Materials 2011, 13(6): B197-B217


GLOBAL IMPLANTABLE BIOMATERIALS MARKET


Expected Market Size By 2023

\$136.59 Billion

Expected Growth Rate Through 2023

10.04%

Commercially available oral implants with nanorough surfaces

Product name	Manufacturer	Mean surface roughness (nm)		
Lifecore turned	Lifecore Biomedical	12		
3i Nanotite	3i Biomet	23		
3i Prevail	3i Biomet	23		
3i Osseotite polished part	3i Biomet	21		
Astra Tech Tioblast	Astra Tech AB	16		
Lifecore RBM	Lifecore Biomedical	18		
3i Osseotite etched Part	3i Biomet	20		
Dentatus machined	Dentatus AB	43		
Nobel Biocare TiUnite	Nobel Biocare AB	33		
Astra Tech Osseospeed	Astra Tech AB	21		
Southern implant	Southern implant	32		
Straumann SLA	Straumann	49		
Dentatus blagtanced Engine Pentatus ABerials 2011, 13(6): 197-2317				

Nanobiomaterials for bioimaging and sensing purposes

Material category	Chemical or structural features	Examples of applications
Ceramics	Iron oxide nanoparticles (IONs)	MRI agents for a large variety of imaging and sensing purposes, such as <i>in vitro</i> location and pathway imaging, <i>in vivo</i> cancer detection and diagnosis, drug/ cell/gene tracking, sentinel lymph nodes (SLN) imaging ^[172–179]
	Dye-doped silica nanoparticles	Low-photobleaching, high-stable imaging agent ^[222]
	Nanoporous ZrO ₂ /chitosan composite	Glucose detection ^[191]
Quantum dots	Cd/Se/Te-based quantum dots	Imaging cancer cells, for example, SLN imaging ^[182]
	CdSe/ZnS	in vitro imaging ^[223]
Metals	Gold nanoparticles	Cancer detection, imaging and diagnosis ^[224]
	Silver nanoparticles, nanofilms, etc.	Fluorescence enhancing agents, cancer detection and diagnosis ^[189,225]
Other nanomaterials	Single fluorescent nanodiamond	Low-photobleaching labeling agent ^[181]
	Perfluorocarbon	MRI contrast agent for fibrin clots ^[184]
	Fluorescent polystyrene nanobeads	Visualizing SLN ^[183]
	Carbon nanotubes (CNTs)	Protein detection, ^[195] antigen and DNA detection ^[225]
	Si nanowires	Streptavidin detection ^[193]

Advanced Engineering Materials 2011, 13(6): 197-217

according the origin ...

5

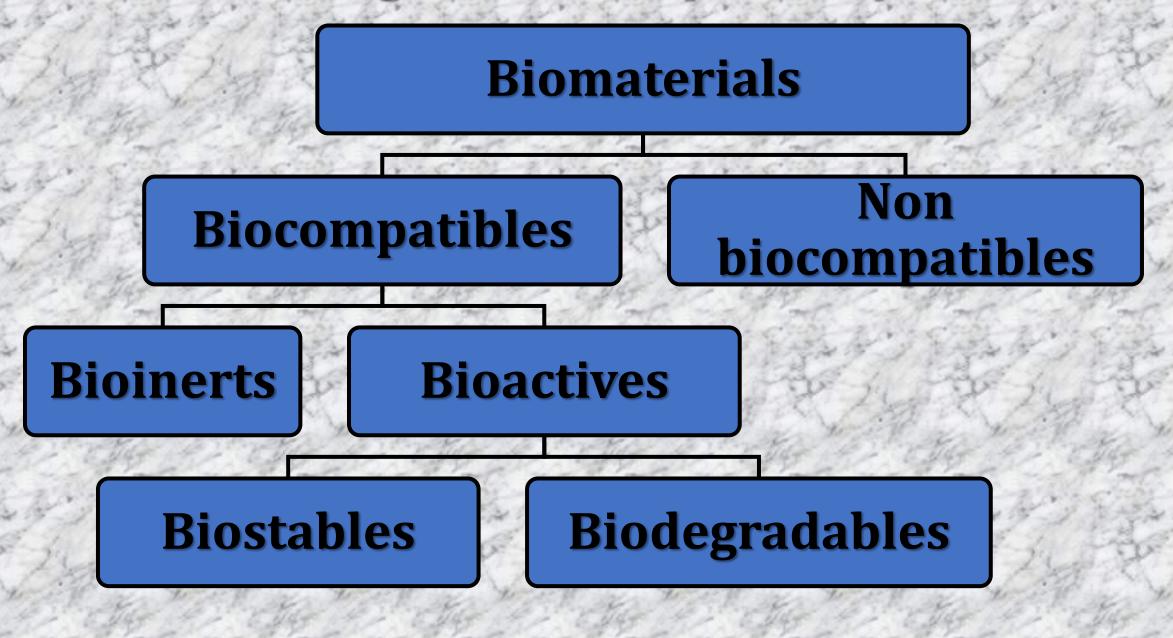
Organic, natural or biological

Synthetic, artificial or alogenous

Autogenous

Homogeneous

Xenogenous


Polymers

Ceramics

Metals

Composites

according the biocompatibility ...

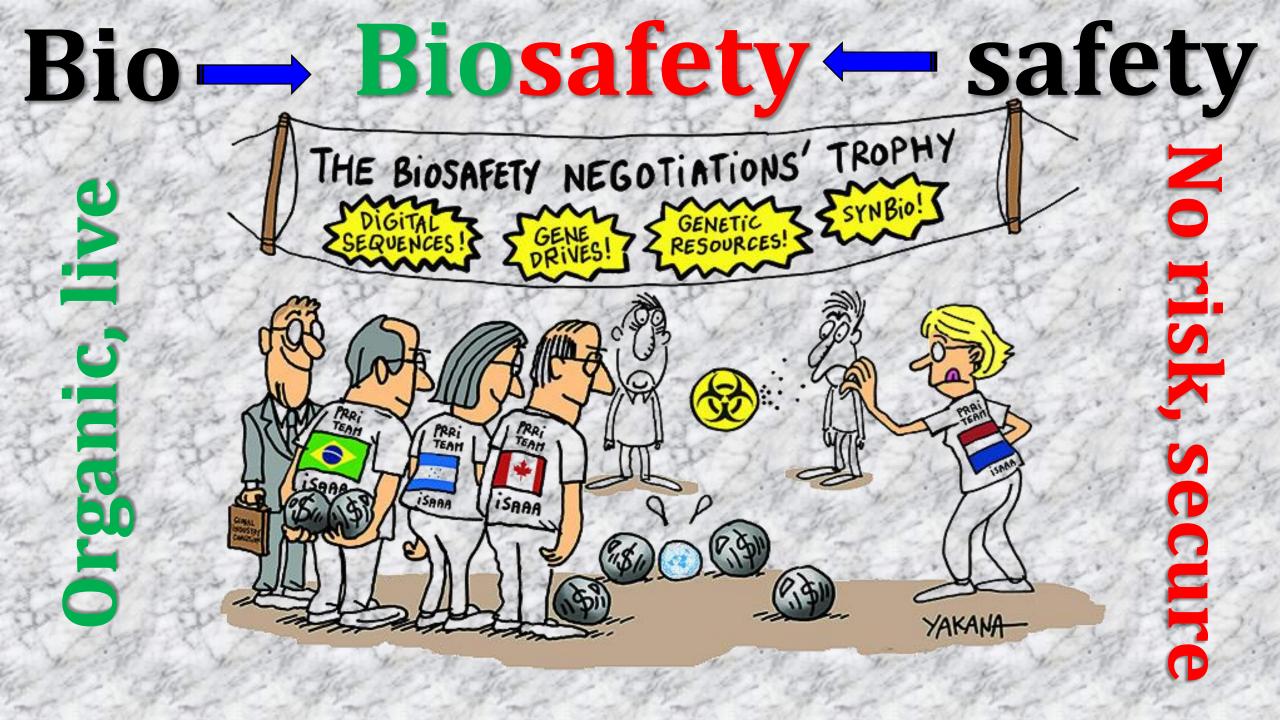
examples ...

Ceramics

PMMA, PCL, PLA, PLG, PLGA, CHI, ALG

HAP, OCP, β-TCP, DCPD, α-TCP, Zr, Y, Al_2O_3

Metals


Ti, Zr, Zn, Steel, Pt, Fe, Au, Cr-Co alloys, Lu, Y

Composites

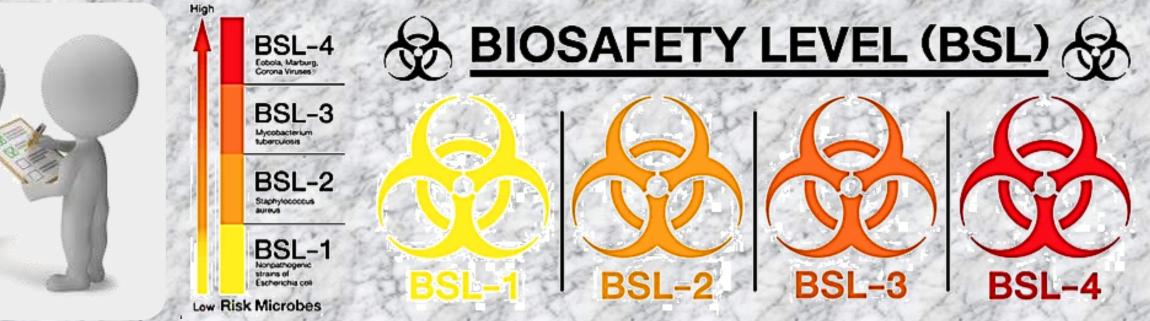
Ca/P cements, dental obturants, coatings

obturants, coatings

pa anolal pa

<u>Chronological facts</u>

- * The term was first used by the agricultural and environmental communities to describe preventative measures against threats from naturally occurring diseases and pests, later expanded to introduced species.
- New Zealand was the earliest adopter of a comprehensive approach with its Biosecurity Act 1993.
- In 2001, the US National Association of State Departments of Agriculture (NASDA) defined as "the sum of risk management practices in defense against biological threats", and its main goal as "protect[ing] against the risk posed by disease and organisms".
- In 2010, the World Health Organization (WHO) describes the aim of biosecurity being "to enhance the ability to protect human health, agricultural production systems, and the people and industries that depend on them", with the overarching goal being "to prevent, control and/or manage risks to life and health as appropriate to the particular biosecurity sector".


Biosafety is related to several fields:

- * Ecology (referring to imported life forms from beyond ecoregion borders),
- * Agriculture (reducing the risk of alien viral or transgenic genes, genetic engineering or prions such as BSE/"MadCow", reducing the risk of food bacterial contamination)
- * Medicine (referring to organs or tissues from biological origin, or genetic therapy products, virus; levels of lab containment protocols measured as 1, 2, 3, 4 in rising order of danger),
- * Chemistry (i.e., nitrates in water, PCB levels affecting fertility)
- Exobiology (i.e., NASA's policy for containing alien microbes that may exist on space samples. See planetary protection and interplanetary contamination), and
- * Synthetic biology (referring to the risks associated with this type of lab practice)

recommends staff training should always include information on safe methods for highly hazardous procedures that are commonly encountered by all laboratory personnel and which involve

- * Inhalation risks (i.e. aerosol production) when using loops, streaking agar plates,
- * pipetting, making smears, opening cultures, taking blood/serum samples, centrifuging, etc.
- * Ingestion risks when handling specimens, smears and cultures
- * Risks of percutaneous exposures when using syringes and needles
- * Bites and scratches when handling animals
- * Handling of blood and other potentially hazardous pathological materials
- * Decontamination and disposal of infectious material.

- A microorganism that is unlikely to cause human or animal disease (no or low individual and community risk).
- A pathogen that can cause human or animal disease but is unlikely to be a serious hazard to laboratory workers, the community, livestock or the environment. Laboratory exposures may cause serious infection, but effective treatment and preventive measures are available and the risk of spread of infection is limited (moderate individual risk, low community risk).
- A pathogen that usually causes serious human or animal disease but does not ordinarily spread from one infected individual to another. Effective treatment and preventive measures are available (*high individual risk, low community risk*).
- A pathogen that usually causes serious human or animal disease and that can be readily transmitted from one individual to another, directly or indirectly. Effective treatment and preventive measures are not usually available (*high individual and community risk*).

regulatory acceptance >> availability as official guideline such as OECD, etc

evaluation

>> chemical application domain, etc

extrapolation

>> in vitro - in vivo prediction models Assays (animals) *Phase I *Phase II *Phase III

Pre-clinic

Based on the Universal Declaration of Animal Rights, adopted after the 3rd Meeting on Animal Rights, London, September 21-23, 1977 and approved by UNESCO and ONU in 1978.

Clinic Assays (volunteer human beings, Declaration of Helsinski, 1964) consensual trials with the approval of volunteers

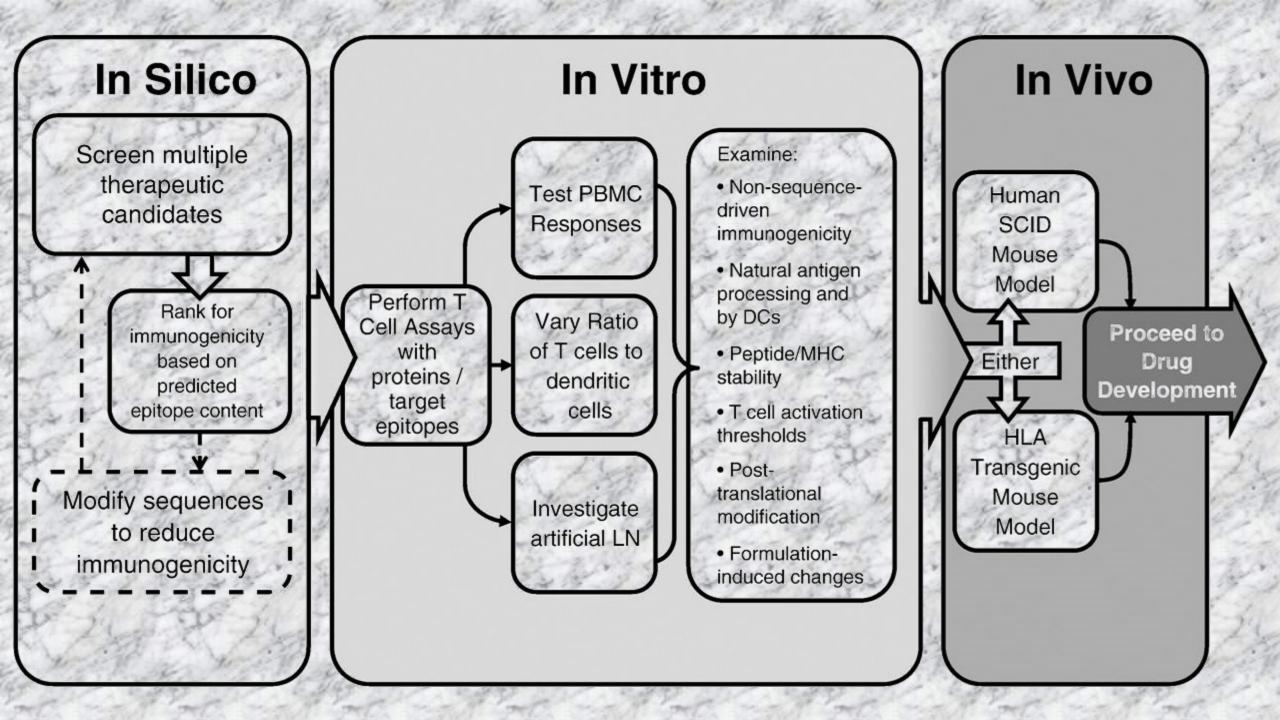
assay performance >> standardization.

repeatability.

sensitivity, specificity, etc

strategy

>> which process should be replaced, identifying critical steps, etc



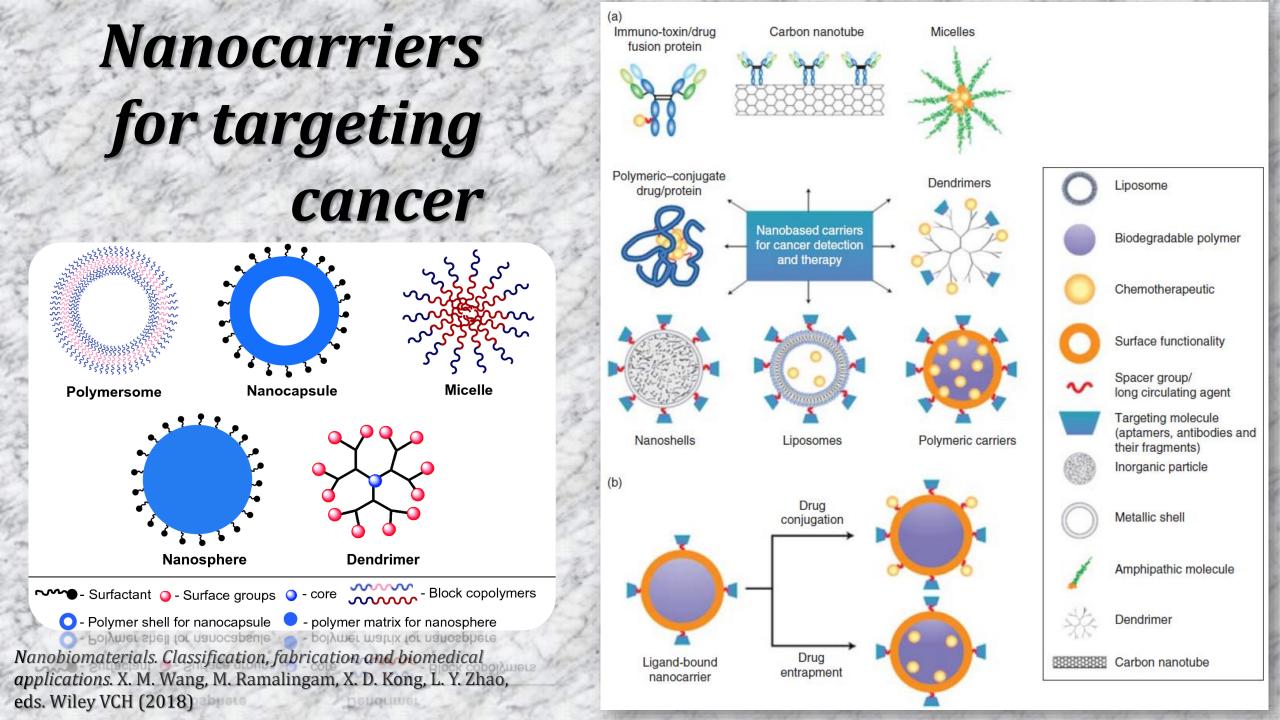
Animal sequence for pre-clinic test

- * Wistar rat
- * New Zealand white rabbit
- * Beagle dog
- * Green monkey

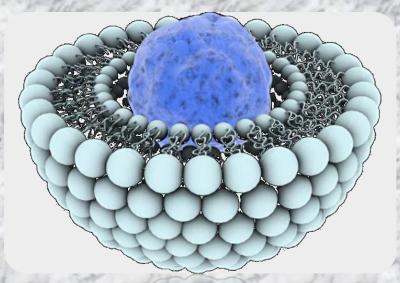
Toxicological aspects
Cytotoxicity
Histotoxicity
Hemotoxicity
Genotoxicity

Essential requirement before *in vivo* application. The aim of *in vitro* validation is to effectively and less expensively confirm the biocompatibility of materials without sacrifice of animals.

Methods for evaluation of in vitro cytotoxicity


Criterion	Methods	Note
Metabolic activity	MTT assay	Measuring the activity of NAD(P)H-dependent cellular oxidoreductase enzymes; the formed formazan is solubilized in a specific solvent
and the	XTT assay	Yielding high sensitivity; the formed formazan dye is water-soluble
the state	MTS assay	One-step MTT assay; avoiding intermittent steps required in the MTT assay; susceptible to colorimetric interference
	WST assay	Giving various absorption spectra of the formed formazans; yielding a water-soluble formazan
ROS production	DCF assay	Using a fluorogenic probe; yielding fluorescent DCF by intracellular ROS
Membrane integrity	Using vital dyes	Staining only dead cells
Early Earl	LDH assay	Measuring the release of cytoplasmic enzyme (LDH)
DNA damage	Comet assay	Measuring the fluorescence of the migrated DNA fragments along the electrophoresis gel

Nanobiomaterials. Classification, fabrication and biomedical applications. X. M. Wang, M. Ramalingam, X. D. Kong, L. Y. Zhao, eds. Wiley VCH (2018)


Some studies on the in vivo biosafety of CNTs to date

Material	In vivo model	Findings
Oxidized MWCNT	Male Swiss mouse	 Exposing via a tail vein intravenous injection Increase in <i>in vivo</i> biocompatibility No nephrotoxicity Removing through renal excretion and biliary pathway
SWCNT	Adult New Zealand white rabbit	 Exposing via a posterior neck jugular vein Mainly accumulating in liver No overt clinical signs and no acute toxicity at a dose of 20 μg kg⁻¹

Nanobiomaterials. Classification, fabrication and biomedical applications. X. M. Wang, M. Ramalingam, X. D. Kong, L. Y. Zhao, eds. Wiley VCH (2018)

List of liposomal nanobiomaterials in clinical applications and trials

Nanobiomaterials. Classification, fabrication and biomedical applications. X. M. Wang, M. Ramalingam, X. D. Kong, L. Y. Zhao, eds. Wiley VCH (2018)

5	Name	Material	Drug	Indication(s)	Status
2	Marqibo [®]	Liposomal	Vincristine	Acute lymphoblastic leukemia	Market
	DaunoXome®	Liposomal	Daunorubicin	Karposi sarcoma	Market
2	Onivyde®	Liposomal	Irinotecan	Pancreatic cancer	Market
5	Doxil [®] /	Liposomal	Doxorubicin	Myeloma	Market
2	Caelyx TM	- Mart		the start	
2	Onco TCS	Liposomal	Vincristine	Relapsed aggressive non-Hodgkin's lymphoma (NHL)	Market
2	MCC-465	PEG-liposome	Doxorubicin	Stomach cancer	Phase I
	Myocet	Liposomal	Doxorubicin	Metastatic breast cancer	Phase II
	SPI-077	Liposomal	Cisplatin	Various cancers	Phase II
2	Oncolipin	Liposomal	Interleukin 2	Immune stimulant	Phase II
NAME OF	OSI-7904 L	Liposomal	Thymidylate synthase inhibitor	Solid tumors	Phase II
1	LEP ETU	Liposomal	Paclitaxel	Solid tumors	Phase1/
	LE-SN38	Liposomal	Irinotecan metabolite	Solid tumors	Phase II
	OSI-211	Liposomal	Lurtotecan	Ovarian cancer; Small cell lung cancer	Phase II
e e	Aroplatin	Liposomal	Oxaliplatin	Colorectal cancer	Phase II
-	ALN-VSP	Liposomal	KIF11 and VEGF-siRNA		Phase I

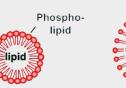
List of metal an inorgani nanobiomaterial in clinica application

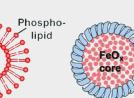
Nanobiomaterials. Classification, fabrication and biomedical applications. X. M. Wang, M. Ramalingam, X. D. Kong, L. Y. Zhao, eds. Wiley VCH (2018)

Name	Material	Indication(s)	Application
Feridex [®] / Endorem [®]	Superparamagned iron oxide nanoparticles (SPION) coated with dextran	ti&uperparamagnetic character	Imaging agent
Ferumoxtran-10	Iron oxide nanoparticle	Magnetic resonance imaging	Prostate cancer
GastroMARK TM ; umirem [®]	SPION coated with silicone	Superparamagnetic character	Imaging agent
Ferumoxytol (Feraheme)	Iron oxide nanoparticle	Magnetic resonance imaging	Head and neck. cancer, lymph node cancer
Nanotherm [®] (MagForce)	Iron oxide	Stor Fight Birth	Glioblastoma
Vitoss [®] (Stryker)	Calcium phosphate	Mimics bone structure allowing cell adhesion and growth	Bone substitute
(a) Ostim [®] (b) OsSatura [®] (c) NanOss [®] (d) EquivaBone [®]	HA	Mimics bone structure allowing cell adhesion and growth	Bone substitute
BonGold	HA	Mimics bone structure allowing cell adhesion and growth	Bone substitute

As summary

sick human body




Nanosphere solid, gold

Nanosphere polymeric hydrogel

Nanosphere mesoporous silica

Nanorod (carbon nanotube) Nanocapsule (SPION)

Selfassembled NP (micelle)

Selfassembled NP (liposome)

Nanoshell, natural ferritin

Nanoshell, engineered albumine + drug

'shell

Synthetic virus-like NP

nanobiomaterials to cure it

need to be evaluated

Biosafet

Recommended bibliography

BOOKS

- Nanobiomaterials. Classification, fabrication and biomedical applications. X. M. Wang, M. Ramalingam, X. D. Kong, L. Y. Zhao, eds. Wiley VCH (2018)
- Biosafety ad the environment. An introduction to the Cartagena Protocol on Biosafety. The Secretariat
 of the Convention on Biological Diversity and United Nations Environment Programme (2002)
- Biomaterials Science An Introduction to Materials in Medicine. B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, eds. Third Edition. Academic Press. Elsevier (2013)

ARTICLES

- E. M. Christenson, K. S. Anseth, J.J.J.P. van den Beucken, C. K. Chan, B. Ercan, J. A. Jansen, C. T. Laurencin, W. J. Li, R. Murugan, L. S. Nair, S. Ramakrishna, R. S. Tuan, T. J. Webster, A. G. Mikos. Nanobiomaterial applications in orthopedics. *Journal of Orthopaedic Research* 2007, 25(1): 11-22.
- L. Yang, L. Zhang and Thomas J. Webster. Nanobiomaterials: State of the Art and Future Trends. Advanced Engineering Materials 2011, 13(6): 197-217
- D. F. Williams. The relationship between biomaterials and nanotechnology. *Biomaterials* 2008, 29: 1737-1738
- ✤ D. F. Williams. On the nature of biomaterials. *Biomaterials* 2009, **30**: 5897-5909

