Semmelweis University
Department of Anatomy, Histology and Embryology

Faculty of Medicine
2nd year 1st semester

ANATOMY HANDBOOK
September 2019

Dr. Andrea D. Székely
Associate Professor
Course Director of the English Language Program

Dr. Ágoston Szél
Full Professor
Head of Department
LEARNING OBJECTIVES

Aims of the lectures in anatomy: Presentation of the important and/or complicated chapters such as introductory chapters, thorax, pelvis, hand, foot, skull, heart, chapters of the visceral organs, central nervous system, organs of special senses, topographical anatomy.

Aims of the lectures in cell biology and histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic tissues (epithelial, connective, muscle and nervous). Completing the gross anatomy with the detailed presentation of the fine structure of the organs, including the ultrastructural details as well as the molecular arrangement. Important chapters: basic tissues, viscera, central nervous system.

Aims of the lectures in embryology: Presentation of the early development from the differentiation of the germ cells to the formation of the human embryo (general embryology). Presentation of the development of the organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the practical sessions in the dissecting room: Based on the weekly programs the students study the preparations (bones, joints, muscles, viscera, brain) and dissect (parts of or an entire cadaver). They are aided by the lab instructors. Bones, joints, muscles and peripheral nervous system will be taught primarily in the dissecting room.

Aims of the practical sessions in the histology room: Facilitate the understanding of the basic tissues (epithelial, connective, muscle and nervous) and the fine structure of the organs through the observation and interpretation of histological specimens.

Discussion of the more complicated chapters of the embryology is presented on small group discussions connected to the practical sessions in the dissecting room.

The knowledge of the students will be checked by mid-term tests.

Lectures: first semester: 3x 45 min; second semester: 3x 45 min; third semester: 3x 45 min; fourth semester: 1x 45 min.
Topics of the lectures:

First semester: Gross anatomy of the bones, joints and muscles, basic cytology, basic histology, basic embryology, development of the skull, spine and limbs.

Second semester: Heart and vessels, lymphatic organs, viscera and body cavities; integrated gross anatomy, cytology, histology and embryology.

Third semester: Central and peripheral nervous system, organs of special senses, endocrine organs; integrated gross anatomy, cytology, histology and embryology.

Fourth semester: Topographical anatomy of the head, neck and body cavities (thorax, abdomen, pelvis), cross sectional anatomy.

Practical course
6x 45 min; second semester: 6x 45 min; third semester: 4x 45 min; fourth semester: 2x 45 min;

First semester: Gross anatomy of the bones, joints and muscles, basic cytology, basic histology, basic embryology, development of the skull, spine and limbs.

Second semester: Heart and vessels, lymphatic organs, viscera, topography of body cavities; integrated gross anatomy, cytology, histology and embryology. Topographical anatomy of the ventral regions of limbs and the trunk.

Third semester: Central and peripheral nervous system, organs of special senses, endocrine organs; integrated gross anatomy, cytology, histology and embryology. Topographical anatomy of the dorsal regions of limbs and the trunk, including spinal cord.

Fourth semester: Topographical anatomy of the head, neck and body cavities (thorax, abdomen, pelvis), cross sectional anatomy. Review of the subjects taught and studied during the four semesters.

Type of exams: first semester: semifinal; second semester: semifinal; third semester: semifinal; fourth semester: final exam from the subjects of the four semesters.

ECTS credits: four semesters together: 28 (first semester: 9; second semester: 9; third semester: 7; fourth semester: 3)
EM II ANNOUNCEMENTS

Evaluation is made using a five-grade scale (1-5).

Signing of the lecture book: active participation in dissection room and histology lab sessions is obligatory. Students should attend at least 75% of the scheduled hours, including the obligatory midterm examination, to gain a signature proving the validity of the semester. Absences are therefore limited in 25%.

Notebooks should be used regularly in **histology lab sessions** in order to prepare schematic drawings of the histological specimens

Mid-term examinations: During the semester, both practical and theoretical knowledge will regularly be evaluated. There are two mid-term tests during the semester. Attendance at these mid-terms is obligatory or the semester is not accepted. These tests may be oral or written exams. **Anatomy** mid-terms include both identification of several structures on the specimen and theoretical questions related to the subject. The results of all tests will appear on the personal achievement cards.

Competition: Students achieving an average of 4.00 at the two mid-term tests may participate in the competition (TBA). Registration for the competition will be open in the 12th week.

Topics: Material of the semester. **Format:** written test, including slides of macroscopical and microscopical specimen together with relevant theoretical questions. Successful participants will be exempted from the semifinal examination with a mark offered on the basis of the competition result.

Obligatory dissection work – during the 4 semesters, every student is required to produce a fully dissected specimen to be exempted from the dissection part of the final examination. The specimen will be evaluated by a departmental jury.

Semifinal examinations are composed of the following parts:

1. written pretest,

2. oral examination (practical and theoretical questions in Macrosopy together with the identification/description of two histological specimen.

N.B. – In case neither the first nor the repeated takes of a semifinal exam have been successful the exam has to be postponed to the following, exam period (i.e. ‘CV’ exam if there are possibilities left). Students may apply with the department to be exempted from passing the prerequisite.
EM II.
Subject matter of the 3rd semester

I. Central nervous system
 a) gross anatomy of brain and spinal cord, meninges
 b) nuclei and tracts of brain and spinal cord
 c) development of the brain and the spinal cord

II. Peripheral nervous system
 a) cranial nerves
 b) spinal nerves
 c) autonomic nervous system
 d) development of the peripheral nervous system

III. Organs of special senses (gross anatomy, histology and embryology)
 a) organ of vision, visual pathways
 b) organ of hearing and equilibrium, auditory pathways, vestibular system
 c) organ of smell, olfactory pathways
 d) organ of taste, gustatory pathways
 e) skin and appendages

IV. Endocrine organs (gross anatomy, histology and embryology)

V. Topographical anatomy of the head&neck together with the dorsal regions of the trunk

Midterm test I. Topic: Gross anatomy and embryology of the central nervous system.
 (oral)
 Date: 4th week, September 30 - October 4.

Midterm test II. Topic: Microscopy of the central nervous system, cranial nerves.
 (written)
 Date: 10th week, November 11-15.

Semifinal examination
 Topics: Subject matter of the semester
 - Written pretest
 - Oral examination (practical and theoretical questions in Macroscopy and Embryology)
 and the identification/description of two histological slides.
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Lenhossék lecture room</th>
<th>Dissection room</th>
<th>Histology lab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monday 14.00 - 15.40 and Tuesday 8.00 - 8.45</td>
<td>Grs 1-6 Tue 12.00, Thu 13.00</td>
<td>Grs 1-6 Thursdays</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grs 7-8 Thu 15.00, Fri 12.00</td>
<td>Grs 7-8 Fridays</td>
</tr>
<tr>
<td>Week 1</td>
<td>Sept 9-13</td>
<td></td>
<td>Divisions of the brain, meninges, arteries and veins of the brain, surface structures of the hemispheres, basis cerebri. Specimen demonstration: dura mater, sinuses</td>
<td>-</td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept 16-20</td>
<td></td>
<td>Lateral ventricles, third ventricle Brain stem, fourth ventricle, cerebellum</td>
<td>-</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept 23-27</td>
<td></td>
<td>Cross sections of the brain. Specimen demonstration: spinal cord together with the membranes</td>
<td>-</td>
</tr>
<tr>
<td>Week 4</td>
<td>Sept 30 - Oct 4</td>
<td></td>
<td>1. Revision 2. Midterm test 1: Anatomy and development of the brain and the spinal cord</td>
<td>-</td>
</tr>
<tr>
<td>Week 5</td>
<td>Oct 7-11</td>
<td></td>
<td>Dissection of the back muscles, suboccipital trigone.</td>
<td>Nervous system I. Peripheral nerve, motor end plate, spinal cord, brainstem</td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct 14-18</td>
<td></td>
<td>'In situ' dissection of the spinal cord. Demonstration of the spinal ganglia, spinal nerves, membranes.</td>
<td>Nervous system II. Cerebellar and cerebral cortices Pinal body</td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct 21-25</td>
<td></td>
<td>Cranial nerves 5, 7 and 9. Dissection of the superficial and deep regions of the head (frontal, infraorbital, buccal, infratemporal, parotidomasseteric regions and the parathyroid gland space).</td>
<td>-</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct 28 - Nov 1</td>
<td></td>
<td>Midterm test 2 (written) Microscopy of CNS, cranial nerves 2. Dissection of the eye (coats and muscles, chambers, optic nerve)</td>
<td>-</td>
</tr>
<tr>
<td>Week 9</td>
<td>Nov 4-8</td>
<td></td>
<td>Cranial nerves 10, 11 and 12 Dissection of the submandibular, carotid, median cervical regions</td>
<td>-</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov 11-15</td>
<td></td>
<td>1. Midterm test 2</td>
<td>Organs of special senses I. Eyeball, retina, lacrimal gland</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov 18-22</td>
<td></td>
<td>Dissection of the eye, extracocular muscles</td>
<td>-</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov 25-29</td>
<td></td>
<td>Dissection and demonstration Tympanic cavity, inner ear, temporal bone</td>
<td>Organs of special senses II. Organ of Corti, palm skin, scalp skin, mammary gland</td>
</tr>
<tr>
<td>Week 13</td>
<td>Dec 2-6</td>
<td></td>
<td>Organs of special senses, head and neck regions</td>
<td>Endocrine organs Pituitary, thyroid, parathyroid, suprarenal glands; Endocrine cells in the testicle, ovary, corpus luteum and pancreas</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec 9-13</td>
<td></td>
<td>Revisions Brain in situ, cranial nerves</td>
<td>Revision</td>
</tr>
</tbody>
</table>
Academic Year 2019/2020 Faculty of Medicine, Second Year First Semester EM II Groups 9 - 17

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Huzella lecture room</th>
<th>Dissection room</th>
<th>Histology lab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Monday 14.00 - 15.40 and Tuesday 8.00 - 8.45</td>
<td>Grs 9-12 Thu 15.00, Fri 12.00</td>
<td>Grs 9-12 Fridays</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grs 13-17 Wed 10.00, Fri 14.00</td>
<td>Grs 13-17 Fridays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specimen demonstration: dura mater, sinuses</td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Dec 2-6</td>
<td>37. The hypothalamo-hypophyseal system. The pituitary gland Adorján. 2. Patient demonstration 38. Endocrine organs: pineal body, thyroid, parathyroid, adrenal glands Puskár.</td>
<td>Organs of special senses, head and neck regions</td>
<td>Endocrine organs Pituitary, thyroid, parathyroid, suprarenal glands; Pineal body, Endocrine cells in the testicle, ovary, corpus luteum and pancreas</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec 9-13</td>
<td>40. Limbic system Adorján. 41. Drugs of abuse, opiates, endogenous cannabinoids and receptor mediated actions in the CNS Alpár. 42. Gross anatomy and microscopy of the nervous system competition</td>
<td>Revisions Brain in situ, cranial nerves</td>
<td>Revision</td>
</tr>
</tbody>
</table>
RULES AND REGULATIONS IN THE DISSECTING ROOM

IT IS STRICTLY FORBIDDEN to eat, drink, smoke, to chow gums, or to use music devices or phones.
Bags and coats should be left in the lockers before entering the dissecting room.
The lockers will have to be locked using your padlocks.
Please, remember to keep your valuables always on you, or lock them in the lockers since the department takes no responsibility for lost items.

Everybody is supposed to behave in the dissecting room conforming to the spirit of the site. Loud speech, out-of-place jokes and any kind of behaviour, disregarding the dignity of human corpses, should strictly be avoided.

Students are expected to be prepared for the practical work.
Students should take care of the furniture and equipment of the dissecting room. Do not sit on the dissection tables or stand on the tripod stools to avoid accidents. Fire and work safety regulations should be maintained. The dissection room is a hazard area. Cleanliness and order should be kept.

Working in the dissection room involves the use of sharp and pointed tools, injuries should be reported to the lab instructor. The technical personnel will provide first aid when necessary.
The white lab coats should be worn while in the dissection room, but should be removed before leaving the dissection room area. The purpose of wearing the lab coats is to protect one’s clothing from contacting the cadaver specimen. Furthermore we advise you to wear closed toed shoes and clothing covering the legs. In the end of the class, lab coats should be emptied and left in order on the coat hangers. The department is not responsible for valuables left in the dissecting room.
Only the members of the study group can participate in the sessions, visitors may be present only with prior permission by the lab instructor. Students can leave the sessions only with the approval of the lab instructor.

Photos or videos can only be made with the agreement and in the presence of the lab instructor, but not of cadaver specimens.
Specimen preparations should be wrapped and labeled. Dissection materials of other groups or individuals should not be handled. Dissected cadaver pieces should be discarded in a designated container and discarded blades have to be collected separately.
Dissecting rooms are closed between 6:00 PM to 8:00 AM and over the weekends Students may not stay in the dissecting room without the supervision of one of the assistants of the department. In the absence of an instructor, the technical personnel should ask the students to leave the dissecting room.

SMOKING IS STRICTLY FORBIDDEN ON THE DEPARTMENTAL PREMISES, INCLUDING THE GARDEN AND THE YARD!
Histology laboratory session (90 minutes)

<table>
<thead>
<tr>
<th>Week</th>
<th>Grs 1-6 Thursdays 13.00</th>
<th>Grs 7-12 Fridays 12.00</th>
<th>Grs 13-17 Fridays 14.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 9-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 16-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 23-27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 30 - Oct 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 7-11</td>
<td>Nervous system I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88. Peripheral nerve (Sciatic nerve, HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67. Autonomic ganglion (Celiac ganglion, Bielschowsky’s impregnation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53. Autonomic ganglion (Submandibular gland, HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75. Motor end plate (Cholinesterase enzyme histochemistry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79. Spinal cord + dorsal root ganglion (Luxol Fast blue + cresyl violet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. (Vater-)Pacinian corpuscle (plantar skin, HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59. Meissnerian corpuscle (palm skin, HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>103. Muscle spindle (lumbricalis, HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 14-18</td>
<td>Nervous system II.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101. Spinal cord (Luxol Fast blue + cresyl violet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>111. Cortex cerebri (Bodian)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22. Cortex cerebri (Gyrus praecentralis, Nissl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80. Cerebellar cortex (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96. Cerebellar cortex (Neurofilament immunocytochemistry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20. Hippocampus + choroidal plexus (Nissl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. Mesencephalon (Luxol fast blue + cresyl violet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>October 23 is a national holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 21-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>November 1 is a national holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 28 – Nov 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 11-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Organs of special senses I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 18-22</td>
<td>29. Eye bulb (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30. Retina (Toluidine blue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39. Eyelid (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>113. Lacrimal gland (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Organs of special senses II. and skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 25-29</td>
<td>36. Cochlea / organ of Corti (Toluidine blue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Macula (Toluidine blue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59. Palm skin (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53. Glomus organ, nail (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Scalp skin (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>107. Mamma lactans (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93. Mamma non lactans (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Endocrine system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 2-6</td>
<td>44. Pineal body (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Hypothalamus (Chrom haematoxylin floxin/ GÖMÖRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105. Pituitary gland (Chrom haematoxylin floxin/GÖMÖRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>102. Thyroid gland (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104. Parathyroid gland (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32. Suprarenal gland (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70. Endocrine pancreas/ islands of Langerhans (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97. Corpus luteum (HE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>REVISION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 9-13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED BOOKS
During dissection classes keep your belongings in the lockers and lock them with your padlock!

PADLOCK SIZE: 6 mm

Please, remember to keep your valuables always on you, or lock them in the lockers since the department takes no responsibility for lost items.

DISSECTION ROOM TOOLS

- SCALPEL
- OR
- A PAIR OF ANATOMICAL FORCEPS
- RUBBER GLOVES
- PROTECTIVE CLOTHING (LABCOAT)
- GOOGLES
EM II. 3rd semester

TOPICS OF THE SEMIFINAL EXAM

Gross Morphology (oral/practical)
True cadaver specimen/prosections
Identification of organs/structures together with the relevant theoretical/developmental background

Histology (oral/practical)
Description of 2 histological slides
Identification of organs/structures together with the relevant theoretical/developmental background

Written /theoretical examination

Endocrine organs
Gross and microscopical anatomy of the pituitary gland; development of the posterior lobe
Blood supply, histology and development of the anterior and intermediate lobes of the pituitary gland
Gross and microscopical anatomy of the pineal gland
Gross and microscopical anatomy and the development of the thyroid gland
Gross and microscopical anatomy and the development of the parathyroid gland
Gross and microscopical anatomy and the development of the suprarenal gland
Histology of the Langerhans islets
Endocrine cells and function of the male and female gonads
Microscopical structure of the eyeball
Histology of the lacrimal gland
Microscopical structure of the cochlea
Microscopical structure of the skin (scalp and palm)
Histology of the mammary gland (lactating and non-lactating)

Macroscopical structure of the CNS
Gross anatomy of hemispheres
Cranial dura mater and its sinuses
Arachnoid and pia mater. Subarachnoid cisterns. Cerebrospinal fluid
Arteries, circle of Willis and veins of the brain
Gross anatomy of the lateral ventricles
Gross anatomy of the third ventricle
Gross anatomy of the fourth ventricle
Gross anatomy of the large comissural pathways
Gross anatomy of the internal capsule
Gross and microscopic anatomy of basal nuclei
Gross and microscopic anatomy of thalamus
Anatomy, blood supply and development of the diencephalon
Gross and microscopic anatomy of midbrain
Gross and microscopic anatomy of pons
Gross and microscopic anatomy of medulla oblongata
Gross and microscopic anatomy of cerebellum
Cranial nerve exits
Blood supply and meninges of the spinal cord

Microscopical structure and development of the central nervous system
Development and primary differentiation of the neural tube
Development of the spinal cord; neurohistogenesis
Differentiation of the prosencephalon vesicle; development of
the hemispheres and the lateral ventricle
Differentiation of the diencephalon vesicle, development of the third ventricle
Differentiation of the mesencephalon and rhombencephalon vesicles,
development of the fourth ventricle
Roots, branches and components of the spinal nerves; spinal segment
Fine structure (microscopy) of the spinal cord
Neurons and function of the spinal proprioceptive (stretch) reflex
Neurons and function of the spinal flexion (withdrawal) reflex
Neurons and functions of the visceral reflexes
Microscopical anatomy of the medulla
Microscopical anatomy of the pons
Microscopical anatomy of the midbrain
Nuclei of the cranial nerves
Microscopical anatomy of the cerebellum
Afferent and efferent cerebellar connections
Microscopical anatomy of thalamus, divisions, connections and transmitters
Hypothalamus, hypothalamo-hypophyseal systems
Microscopical anatomy of the basal ganglia, divisions, connections and transmitters
Histology of the cerebral cortex; cortical fields
Internal capsule, divisions
Tracts of the protopathic sensibility (anterolateral system)
Tracts of the epicritic sensibility (posterior funiculus/medial lemniscus)
Corticospinal tract (pyramidal tract)
Extrapyramidal system
Limbic system (nuclei and tracts)

Gross anatomy and development of the peripheral nervous system
Development, fate and differentiation of the cells in the neural crest
Development of the peripheral nervous system
Nuclei and branches of the I, II, IV, and VI cranial nerves
Nuclei of the trigeminal nerve; course and fiber composition of the branches of the
ophthalmic (V/1) nerve
Course and fiber composition of the branches of the maxillary nerve (V/2)
Course and fiber composition of the branches of the mandibular nerve (V/3)
Nuclei, course and fiber composition of the branches of the facial nerve (VII)
Nuclei, course and fiber composition of the branches of the glossopharyngeal nerve (IX)
Nuclei, course and fiber composition of the branches of the vagus nerve (X)
Nuclei, course and fiber composition of the branches of the accessory (XI) and hypoglossal nerves (XII)
Cervical plexus and its branches
Brachial plexus and its branches (including the short branches to the neck and shoulder girdle)
Lumbar plexus and its branches
Sacral plexus and its branches
General organization of the autonomic nervous system
The sympathetic trunk
Cranial part of the parasympathetic nervous system
Sacral part of the parasympathetic nervous system

Gross anatomy, histology and embryology of the organs of special senses
Gross anatomy and microscopic structure of the fibrous coat of the eye ball (cornea, sclera)
Gross anatomy and microscopic structure of the vascular coat of the eye ball (choroid, ciliary body, iris)
Gross anatomy, microscopic structure and development of the nervous coat of the eye ball (retina)
Neurons of the visual pathways; localization and microscopic structure of the visual cortex
Gross anatomy, microscopic structure and development of the lens, accomodation
Gross anatomy and content of the chambers of the eye, circulation of the aqueous humor; gross anatomy of the vitreous body
Gross anatomy and function of the external ocular muscles.
Visual reflexes
Gross anatomy, microscopic structure of the eye lids; conjunctiva, Tennon's capsule and periorbit
Gross anatomy, microscopic structure and development of the lacrimal apparatus
Gross anatomy and development of the external ear and the tympanic membrane
Gross anatomy and development of the tympanic cavity and the auditory tube
Gross anatomy and development of the auditory ossicles; joints, muscles, and the mucous membrane of the tympanic cavity
Sensory innervation and blood supply of the tympanic cavity
Internal acoustic meatus
Gross anatomy of the bony labyrinth
Gross anatomy and development of the labyrinth
Morphology, development and divisions of the vestibular apparatus
Receptors and neuronal connections of the vestibular system
Gross anatomy, microscopic structure and development of the cochlear duct and the organ of Corti
Neurons of the auditory pathways
Organ and pathways of olfaction
Organ and pathways of taste
Gross anatomy and microscopic structure of the fibrous coat of the eye ball (cornea, sclera)
Gross anatomy and microscopic structure of the vascular coat of the eye ball (choroid, ciliary body, iris)
Gross anatomy, microscopic structure and development of the nervous coat of
the eye ball (retina)
Neurons of the visual pathways; localization and microscopic structure of the visual cortex
Gross anatomy, microscopic structure and development of the lens, accommodation
Gross anatomy and content of the chambers of the eye, circulation of the aqueous humor; gross anatomy of the vitreous body
Gross anatomy and function of the external ocular muscles.
Visual reflexes
Gross anatomy, microscopic structure of the eye lids; conjunctiva, Tennon's capsule and periorbit
Gross anatomy, microscopic structure and development of the lacrimal apparatus
Gross anatomy and development of the external ear and the tympanic membrane
Gross anatomy and development of the tympanic cavity and the auditory tube
Gross anatomy and development of the auditory ossicles; joints, muscles, and the mucous membrane of the tympanic cavity
Sensory innervation and blood supply of the tympanic cavity
Internal acoustic meatus
Gross anatomy of the bony labyrinth
Gross anatomy and development of the labyrinth
Morphology, development and divisions of the vestibular apparatus
Receptors and neuronal connections of the vestibular system
Gross anatomy, microscopic structure and development of the cochlear duct and the organ of Corti
Neurons of the auditory pathways
Organ and pathways of olfaction
Organ and pathways of taste