LEARNING OBJECTIVES

Aims of the lectures in anatomy: Presentation of the important and/or complicated chapters such as introductory chapters, thorax, pelvis, hand, foot, skull, heart, chapters of the visceral organs, central nervous system, organs of special senses, topographical anatomy.

Aims of the lectures in cell biology and histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic tissues (epithelial, connective, muscle and nervous). Completing the gross anatomy with the detailed presentation of the fine structure of the organs, including the ultrastructural details as well as the molecular arrangement. Important chapters: basic tissues, viscera, central nervous system.

Aims of the lectures in embryology: Presentation of the early development from the differentiation of the germ cells to the formation of the human embryo (general embryology). Presentation of the development of the organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the practical sessions in the dissecting room: Based on the weekly programs the students study the preparations (bones, joints, muscles, viscera, brain) and dissect (parts of or an entire cadaver). They are aided by the lab instructors. Bones, joints, muscles and peripheral nervous system will be taught primarily in the dissecting room.

Aims of the practical sessions in the histology room: Facilitate the understanding of the basic tissues (epithelial, connective, muscle and nervous) and the fine structure of the organs through the observation and interpretation of histological specimens.

Discussion of the more complicated chapters of the embryology is presented on small group discussions connected to the practical sessions in the dissecting room.

The knowledge of the students will be checked by mid-term tests.
Lectures: first semester: 3x 45 min; second semester: 3x 45 min; third semester: 3x 45 min; fourth semester: 1x 45 min.

Topics of the lectures:

First semester: Gross anatomy of the bones, joints and muscles, basic cytology, basic histology, basic embryology, development of the skull, spine and limbs.

Second semester: Heart and vessels, lymphatic organs, viscera and body cavities; integrated gross anatomy, cytology, histology and embryology.

Third semester: Central and peripheral nervous system, organs of special senses, endocrine organs; integrated gross anatomy, cytology, histology and embryology.

Fourth semester: Topographical anatomy of the head, neck and body cavities (thorax, abdomen, pelvis), cross sectional anatomy.

Practical course

First semester: 6x 45 min; second semester: 6x 45 min; third semester: 4x 45 min; fourth semester: 2x 45 min;

First semester: Gross anatomy of the bones, joints and muscles, basic cytology, basic histology, basic embryology, development of the skull, spine and limbs.

Second semester: Heart and vessels, lymphatic organs, viscera, topography of body cavities; integrated gross anatomy, cytology, histology and embryology. Topographical anatomy of the body cavities.

Third semester: Central and peripheral nervous system, organs of special senses, endocrine organs; integrated gross anatomy, cytology, histology and embryology. Topographical anatomy of the dorsal regions of limbs and the trunk, including spinal cord.

Fourth semester: Topographical anatomy of the head, neck and body cavities (thorax, abdomen, pelvis), cross sectional anatomy. Review of the subjects taught and studied during the four semesters.

Type of exams: first semester: semifinal; second semester: semifinal; third semester: semifinal; fourth semester: final exam from the subjects of the four semesters.

ECTS credits: four semesters together: 27 (first semester: 8; second semester: 9; third semester: 7; fourth semester: 3)
EM I ANNOUNCEMENTS

Evaluation is made using a five-grade scale (1-5).

Signing of the lecture book: active participation in lectures, dissection room and histology lab sessions is obligatory. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in **25%**.

Midterm examinations: During the semester, both practical and theoretical knowledge will regularly be evaluated. The midterm tests are obligatory and cannot be done at a different time, neither can they be retaken. The anatomy and histology mid-terms may be oral or written exams. **Anatomy** mid-terms include both identification of several structures on the specimen and theoretical questions related to the subject. **Histology** midterms include the identification of a certain number of structures in slides, as well as, theoretical questions related to general embryology. The results of all tests will appear on the personal achievement cards.

A **semester practical mark** is calculated from the midterm marks together with the personal achievement mark given by the group instructor. This practical mark will be counted into the semifinal examination and will be written on the personal achievement cards.

Semifinal examinations are composed of the following parts:

1. written pretest,
2. oral examination - practical and theoretical questions in Macroscopy and Histology, including the identification/description prosections and two histological specimen. Old curriculum students will have an extra question concerning cell biology.

Notebooks should be used regularly in **histology lab sessions** in order to prepare schematic drawings of the histological specimens. Students will be asked to present their histology notebooks, containing the drawings, during the semifinal exams.

N.B. – In case, neither the first nor the repeated takes of a semifinal exam have been successful and so the exam has to be postponed to the following, exam period (i.e. ‘CV’ exam), only those students will be allowed to go for a CV exam, parallel to continuing their studies whose **average score of the midterm tests** is equal, or higher than 2.00.
RULES AND REGULATIONS IN THE DISSECTING ROOM

IT IS STRICTLY FORBIDDEN to eat, drink, smoke, to chow gums, or to use music devices or phones. Bags and coats should be left in the lockers before entering the dissecting room. The lockers will have to be locked using your padlocks. Please, remember to keep your valuables always on you, or lock them in the lockers since the department takes no responsibility for lost items.

Students are expected to be prepared for the practical work. Everybody is supposed to behave in the dissecting room conforming to the spirit of the site. Loud speech, out-of-place jokes and any kind of behaviour, disregarding the dignity of human corpses, should strictly be avoided.

The dissection room is a hazard area. Fire and work safety regulations should be maintained. Cleanliness and order should be kept. Students should take care of the furniture and equipment of the dissecting room. Do not sit on the dissection tables or stand on the tripod stools to avoid accidents.

Working in the dissection room involves the use of sharp and pointed tools, injuries should be reported to the lab instructor. The technical personnel will provide first aid when necessary.

The white lab coats should be worn while in the dissection room, but should be removed before leaving the dissection room area. The purpose of wearing the lab coats is to protect one’s clothing from contacting the cadaver specimen. Furthermore we advise you to wear closed toed shoes and clothing covering the legs. In the end of the class, lab coats should be emptied and left in order on the coat hangers. The department is not responsible for valuables left in the dissecting room.

Only the members of the study group can participate in the sessions, visitors may be present only with prior permission by the lab instructor. Students can leave the sessions only with the approval of the lab instructor.

Photos, or videos can only be made of line drawings with the agreement and in the presence of the lab instructor.

Specimen preparations should be wrapped and labeled. Dissection materials of other groups or individuals should not be handled. Dissected cadaver pieces should be discarded in a designated container and discarded blades have to be collected separately in a specifically labeled container.

Dissecting rooms are closed between 6:00 PM to 8:00 AM and over the weekends. Students may not stay in the dissecting room without the supervision of one of the assistants of the department. In the absence of an instructor, the technical personnel should ask the students to leave the dissecting room.

SMOKING IS STRICTLY FORBIDDEN ON THE DEPARTMENTAL PREMISES, INCLUDING THE GARDEN AND THE YARD!
EM I.

Subject matter of the 1st semester

I. Anatomy:
 1. Locomotor system:
 a) bones (osteology)
 b) joints (arthrology)
 c) skeletal muscles (myology)
 2. Vessels of the upper and lower limbs
 a) branches of the brachial artery and tributaries of the brachial vein
 b) branches of the femoral artery and tributaries of the femoral vein
 3. Large nerves of the limbs.

II. Basic tissues (epithelia, connective and supporting tissues, skeletal, smooth and cardiac muscle types, elements of the peripheral nervous system) including the ultrastructural features.

III. Human development (embryonic period):
 1. From germ cells to the formation of the embryo, placenta and fetal membranes
 2. Development of the locomotor system (skeleton, joints, skeletal muscles)

Test I.
 Topic: Upper limb
 Date: 6th study week, October 12 and 14

Test II.
 Topic: Epithelial, connective and supporting tissues
 Date: 10th study week, November 7-11

Test III. (group test)
 Topic: Joints, muscles, vessels and nerves of the extremities.
 Date: 11th study week, November 14-18

Semifinal examination
 Topics: Subject matter of the semester

On the day of the oral and written examination
 1) Written test (Anatomy, Histology and Embryology)
 2) Dissection room examination – prosections (oral)
 3) Histology of the basic tissues - 2 slides (oral).

For old curriculum students, there is one cellbiology question included
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>EM I, Groups 1-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dissection room</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>Sept. 5-9</td>
<td>1. The role of anatomy, histology and embryology in the medical curriculum. Terminology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The cell, cellular membrane, endoplasmic reticulum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. The cellular framework, microtubules, IM filaments, actin microfilaments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Adhesion molecules, intercellular connections, epithelial cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Types of epithelia. Glandular epithelium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Cell nucleus, mitochondrion, peroxysome</td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept. 12-16</td>
<td>7. Endocytosis, cellular organelles. Apoptosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Exocytosis, Golgi apparatus, vesicular transport, sorting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. General arthrology and myology. Joints, muscles and movements of the shoulder and the upper girdle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Muscles and actions of the elbow joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Joints, muscles and actions of the wrist and the hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Connective tissue cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Connective tissue fibres, types and formation. Extracellular matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15. Supporting tissues (cartilage, bone)</td>
</tr>
<tr>
<td></td>
<td>Sept. 19-23</td>
<td>16. Ossification, bone remodelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17. Muscles, joints and ligaments of the vertebral column. Intervertebral, atlantooccipital and atlantoaxial joints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18. Bones, joints, construction of the pelvis. Muscles and actions of the hip joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19. Subinguinal hiatus. Adductor and femoral canals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20. Muscles and actions of the knee joint</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept. 26-30</td>
<td>21. Gametes, fertilization, cleavage and blastulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22. Muscles and joints of the foot. Architecture of the foot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23. – National Holiday</td>
</tr>
<tr>
<td>Week 4</td>
<td>Oct. 1-7</td>
<td>24. Implantation, bilaminar embryo. Fetal membranes, umbilical cord. Structure of the placenta, placental circulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25. Molecular basis for gastrulation. Formation, differentiation and derivatives of the germinal layers.</td>
</tr>
<tr>
<td>Week 5</td>
<td>Oct. 8-14</td>
<td>27. Blood. Corpuscular elements</td>
</tr>
<tr>
<td></td>
<td>Oct. 15</td>
<td>28. Formation of the primary tissues. Homeobox genes, stem cells</td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct. 12</td>
<td>29. Development of the limbs and the vertebral column together with the trunk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30. Muscle tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32. Facial skeleton. Orbit, nasal cavity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33. Temporal bone. Internal and external skull base</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct. 22-28</td>
<td>34. Skull. Infratemporal and pterygopalatine fossae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35. Red bone marrow, erythropoesis. Formation of leukocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36. Nervous tissue. Glial cells</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct. 29-Nov. 4</td>
<td>37. Temporomandibular joint, muscles of mastication; muscles of facial expression</td>
</tr>
<tr>
<td></td>
<td>Nov. 1</td>
<td>38. Muscles, fasciae and triangles of the neck</td>
</tr>
<tr>
<td></td>
<td>Nov. 2</td>
<td>39. Clinical anatomy of the musculoskeletal system</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov. 7-11</td>
<td>40. Development of the skull, fontanelles.</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov. 14-18</td>
<td>41. Developmental malformations</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov. 21-25</td>
<td>42. General introduction to practical work in the dissection room, tools and rules</td>
</tr>
<tr>
<td>Week</td>
<td>Lectures</td>
<td>Practical sessions</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Academic year 2016/ 2017 Faculty of Medicine EM I. Groups 9-16</td>
<td>Histology lab</td>
</tr>
<tr>
<td></td>
<td>Mondays 12.00-13.40 Wednesdays 12.00-12.45</td>
<td>General introduction to practical work in the dissection room, tools and rules</td>
</tr>
<tr>
<td>Oct. 15.</td>
<td>Saturday is a „Monday” 27. Formation of the primary tissues. Homeobox genes, stem cells</td>
<td>No Monday/Tuesday dissection class No Friday classes for Groups 1,2,4,5 No Friday class for Groups 1,2,4,5</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct. 31-Nov. 4. Oct.31 and Nov. 1 are national holidays 27. Formation of the primary tissues. Homeobox genes, stem cells</td>
<td>No Monday/Tuesday dissection class</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov. 21-25. 40. Clinical demonstration 41. Development of the skull, fontanelles. 42. Developmental malformations</td>
<td>Muscles of mastication and facial expression</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov. 28-Dec.2. 43. Developmental malformations</td>
<td>Muscles of mastication and facial expression</td>
</tr>
</tbody>
</table>
RECOMMENDED BOOKS
During dissection classes keep your belongings in the lockers and lock them with your padlock!

PADLOCK SIZE: 6 mm

Please, remember to keep your valuables always on you, or lock them in the lockers since the department takes no responsibility for lost items.

DISSECTION ROOM TOOLS

SCALPEL

OR

A PAIR OF ANATOMICAL FORCEPS

RUBBER GLOVES

PROTECTIVE CLOTHING (LABCOAT)

GOGBLES
Semester-end and examination announcements

During the last week of the semester all our students will be informed of their dissection room mark and whether they have gained a signature for the present semester. The signature will be inscribed in neptun only. Please note, that only those students may register for a semifinal examination whose semester is accepted (i.e., have not been refused the signature).

Dissection room marks are individually considered for each student by their group instructor, and will be calculated on the basis of the midterm marks together with personal progress, diligence, behaviour presented during the practical classes.

All midterm marks, together with the dissection room mark, will be written on the personal achievement card. The dissection room mark will be counted in the result of the semifinal examination.

Semifinal examinations will be held only Tuesdays, Wednesdays and Thursdays during the 7 weeks of the examination period. EM I students will be examined only on Tuesdays and Thursdays, ED I students will be examined on all three examination days, whereas ED II examinations and CV EM II and CV ED II final examinations will be held on Wednesdays only.

N.B. The last changes concerning registration/deregistration from a date maybe done via the NEPTUN system 48 hours prior to the selected day.

The exams will start at 13.00

Parts of the semifinal examination

1) Written test (Anatomy, Histology and Embryology – 50% of Embryology answers will have to be passed for a successful written test)
2) Dissection room examination – prossections (oral)
3) Histology of the basic tissues - 2 slides (oral).

For old curriculum students one question in cell biology (see below) will be included

Please, leave your belonging in a locker (histology floor) and gather in front of the lecture room (ground floor) at least 15 minutes before the examination starts. Please, remember to have your
- ID (and the blue study book if you wish to have an inscription)
- blue ink pens
- histology note book
- pair of forceps on you.

In case of an unsuccessful examination, the 1st retake will be free of charge, while for a second repeated exam you will need to pay a fee ahead of the examination ad present a proof of it upon entering the examination room.

In case neither the first, nor the repeated, takes of a semifinal exam have been successful and so the exam will have to be postponed to the following exam period (as a ‘CV’ exam), only those students will be allowed to register in neptun for a CV ana1 course, parallel to registering for the regular ana2 course (i.e. continuing with their studies) whose average score of the midterm tests is equal, or higher than 2.00.
TOPICS OF THE SEMIFINAL EXAM
Academic year 2016/2017 First semester

EM I.

Histology (for both 8 and 9 credit courses)

Description of 2 histological slides with the help of a microscope

Further theoretical issues related to the inspected slide

- Concept of basic tissues
- Definition and classification of epithelial tissue
- Simple epithelia
- Stratified epithelia
- Membrane specializations of epithelia
- Glandular epithelia
- Cells of connective tissue
- Ground substance and fibres of connective tissue
- Types of connective tissue
- Umbilical cord and placenta
- Blood and the formed elements of blood
- Histology of the bone marrow, maturation of erythrocytes and platelets

- Differentiation of granulocytes, lymphocytes and monocytes
- Histology of cartilage
- Histology of the bone tissue
- Intramembranous ossification
- Endochondral ossification
- Growth and remodeling of bone
- Smooth muscle and myoepithelial cells
- Skeletal muscle tissue
- Cardiac muscle tissue
- Histology of the peripheral nervous system (sensory and autonomic ganglia)
- Supporting cells in the peripheral nervous system
- Nerve fibers, myelin sheath
- Motor end-plate

Anatomy (for both 8 and 9 credit courses)

- General osteology, classification of bones
- Bones, spaces and connections of the skull, external and internal skull bases
- Neurocranium, components and cavities (anterior, middle and posterior cranial fossae)
- Viscerocranium, components and cavities (walls and connections of the nasal cavity, orbit, oral cavity, pterygopalatine and infratemporal fossae)
- Bones of the axial and appendicular skeleton
- Vertebrae, ribs, sternum
- Bones of the girdles and limbs
- General arthrology
- Fibrous and cartilaginous joints
- Components of the synovial joints
- Classification of synovial joints; movements and mechanisms
- Structure of the vertebral column, the gross anatomy of the muscles acting upon it
- Movements and muscles of the head (atlantooccipital and atlantoaxial joints)
Joints of the shoulder girdle, the gross anatomy of the muscles acting upon them
The shoulder joint, the gross anatomy of the muscles acting upon it
The elbow joint, the gross anatomy of the muscles acting upon it
Structure and movements of the wrist (radiocarpal) joint,
 the gross anatomy of the muscles acting upon it
Metacarpophalangeal and interphalangeal joints, the gross anatomy of
 the muscles concerned with the movements
Carpometacarpal, metacarpophalangeal and interphalangeal joints of the thumb,
 the gross anatomy of the muscles concerned with the movements
The hip joint and the gross anatomy of the muscles concerned with the movements
The knee joint and the gross anatomy of the muscles concerned with the movements
The ankle joint together with the gross anatomy of the muscles acting upon it
The subtalar and talocalcaneonavicular joints, the muscles acting upon them
The temporomandibular joint and the gross anatomy of the muscles acting on it
Architecture and classification of bones
Structure and actions of somatic muscles
Osteofibrous structure of the thoracic cage (bones, joints, ligaments, movements)
Muscles and movements of the thorax
Muscles of the back and nape (occipital region)
The axilla, the quadrangular and triangular spaces
The cubital fossa
Muscles and cross section of the arm
Muscles and cross section of the forearm
Osteofibrous spaces and muscle compartments of the hand, tendinous sheaths
Composition of the pelvis (bones, ligaments and membranes)
Muscles of the buttock, the posterior abdominal wall and the pelvis (external and internal muscles
 of the hip)
Osteofibrous compartments, muscles and cross section of the thigh
Popliteal fossa
Subinguinal hiatus, vascular and muscular compartments; adductor canal, femoral canal
Osteofibrous compartments, muscles and the cross section of the leg
Structure of the foot, arches of the foot
Osteofibrous compartments of the foot, tendinous sheaths
Muscles of mastication
Superficial muscles of the neck and the muscle triangles
Deep muscles of the neck and the laminae of the cervical fascia
Muscles of facial expression

Embryology (for both 8 and 9 credit courses)
Spermatogenesis, spermiogenesis
Oogenesis
Fertilization, cleavage of the zygote
Blastocyst formation; the bilaminar embryonic disc
Implantation
Formation of the intraembryonic mesoderm; the notochord
Neurulation (neural tube and neural crest)
Differentiation of the intraembryonic mesoderm; formation and derivatives of the somites
Derivatives of the intermediate mesoderm
Lateral plate mesoderm and its derivatives
Folding of the embryo
Development of the primitive cardiovascular system, the fetal circulation
The structure and function of the placenta
Development of the fetal membranes (chorion and amnion) and the umbilical cord
Periods of embryonic / fetal life
Twin formation
Development of the limbs
Development of the vertebral column
Development of the skull
Development of the skeletal muscular system

CELL BIOLOGY TOPIC LIST
ONLY FOR OLD CURRICULUM (9 credit course) STUDENTS

General histological procedures (fixation, dehydration, embedding, cutting, rehydration, staining etc.)
Different staining methods (chemical staining, impregnation, enzyme histochemistry, immunohistochemistry)
Light and electron microscopy of cells or tissues
The general structure of eukaryotic cells
Biological membranes: structure, membrane proteins, membrane domains, glycocalyx
Functions of cell membrane, membrane transport
Structure and functions of cell nucleus.
Chromosomes, karyogram, sex chromosomes, sex chromatin
Structure, types and role of RNA, transcription
Structure and function of ribosomes, translation
Structure and function of the rough and smooth endoplasmic reticula
Structure, function of the Golgi apparatus, protein sorting
Protein secretion, exocytosis
Vesicular transport
Cytoskeleton in general
Microtubules: structure, formation and degradation, regulating factors, associated motorproteins
Structure and function of the centrosome (cytocenter), function of microtubules
Structure and role of kinocilia and the primary (sensory) cilium
Structure, regulation and associated proteins of microfilaments.
Functions of microfilaments, significance in cell trafficking processes
Intermedier filaments: structure, function, associated proteins, appearance in different cell types
Adhesion molecules (cell-cell, cell-ECM adhesion)
Cell adhesion structures
The general concept of epithelial tissue, cell polarity, membrane domains, structures that increase the surface
Structure and function of the membrana basalis as well as of the lamina basalis
Mitotic cell division
Cell cycle phases and regulation
Phagocytosis. Intracellular digestion
Lysosomes, synthesis of lysosomal enzymes, their transport pathways, functions, lysosomal diseases.
Pinocytosis. Endosome. Transcytosis.
Apoptosis, autophagy and necrosis. Differentiation, stem cells
Meiotic cell division
Morphology, function and localization of mitochondria
Mitochondrial genome, endosymbiotic theory
Peroxisome